Vous soignerez la présentation de votre copie. Calculatrices interdites !

- 1) Ecrire à l'aide du symbole Σ les sommes suivantes : $S = \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots + \frac{1}{46}$
- 2) $A = \frac{1}{2} \frac{1}{3} + \frac{1}{4} \frac{1}{5} + \frac{1}{6} \frac{1}{7} + \dots + \frac{1}{18}$
- 3) a et b sont des réels distincts. Mettre sous forme d'une seule fraction la plus simple possible la quantité: $\frac{a^3-b^3}{(a-b)^2}-\frac{(a+b)^2}{a-b}$
- 4) Ecrire sous la forme d'un multiple d'une puissance de $3 : A = \frac{3^{2026} + 3^{2025}}{3^{2026} 3^{2025}}$
- 5) Soit l'équation : $ax^2 + bx + c = 0$, où a, b et c sont des réels, avec a non nul.

On suppose que cette équation admet deux solutions réelles non nulles notées x_1 et x_2 .

- a) Démontrer que c est non nul,
- b) Rappeler l'expression de x_1 et x_2 , puis calculer les quantités suivantes, que l'on écrira sous forme simplifiées au mieux :

$$i) x_1 \times x_2$$

$$(ii) \frac{1}{x_1} + \frac{1}{x_2}$$

Maths expertes

Contrôle numéro 1

3 Octobre 2025

Vous soignerez la présentation de votre copie. Calculatrices interdites!

- 5) Ecrire à l'aide du symbole Σ les sommes suivantes : $S = \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots + \cdots + \frac{1}{46}$.
- 6) $A = \frac{1}{2} \frac{1}{3} + \frac{1}{4} \frac{1}{5} + \frac{1}{6} \frac{1}{7} + \dots + \frac{1}{18}$
- 7) a et b sont des réels distincts. Mettre sous forme d'une seule fraction la plus simple possible la quantité: $\frac{a^3-b^3}{(a-b)^2}-\frac{(a+b)^2}{a-b}$
- 8) Ecrire sous la forme d'un multiple d'une puissance de $3 : A = \frac{3^{2026} + 3^{2025}}{3^{2026} 3^{2025}}$
- 5) Soit l'équation : $ax^2 + bx + c = 0$, où a, b et c sont des réels, avec a non nul.

On suppose que cette équation admet deux solutions réelles non nulles notées x_1 et x_2 .

- a) Démontrer que c est non nul,
- b) Rappeler l'expression de x_1 et x_2 , puis calculer les quantités suivantes, que l'on écrira sous forme simplifiées au mieux :

$$i) x_1 \times x_2$$

$$(ii) \frac{1}{x_1} + \frac{1}{x_2}$$