Chapitre 7 Polynoémes, équations et racines niéme de l'unité.

I-Les polynémes

Définition

Soit n un entier naturel, et ay, a4, ... ..., a, des nombres complexes avec a,, # 0.

On appelle fonction polynéme (on dit aussi polynéome) toute fonction P définie sur C par:
Pour tout nombre complexe z, P(z) = a,z" + a,_1z"  + -+ ayz+ ag = Xi_o aiz".

Les nombres ay, a4, ... ..., a, sont appelés les coefficients du polynome P.

L’entier naturel n est appelé le degré du polynome P.

Des polynomes formés d’un seul terme sont appelés des monomes.

Cette année, le plus souvent, les coefficients du polynome seront des réels.

Exemples

- La fonction P définie sur C par: P(z) = 3z?+2z — 1,4 est une fonction polynéme de degré ....
- Le coefficient des z> (comprendre le coefficient multiplicateur des z?) est égal a .....

- Le coefficient des z est égal a .....

- Le coefficient des constantes (c’est-a-dire des z°) est égal a .......

La fonction Q définie sur C par: Q(z) = —4z3 + 8z% — 11z + 1 est une fonction polynéme de degré 3.
Préciser ses coefficients.
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972 ; 3z ; z°; —Z sont des exemples de monémes.

Remarque :
La définition exclut donc la fonction nulle.
On appelle polynéme nul, la fonction P définie sur C par: P(z) = 0.

Attention toutefois, on ne parle pas de degré pour un tel polynéme (tout au moins cette année, I’année
prochaine, vous ferez une construction rigoureuse de ’ensemble des polynémes, et vous verrez qu’on
donne au polynome nul le degré —co.

Définition
Soit P un polynome.

v v On appelle racine de P (ou encore zéro de P), tout nombre complexe a tel que P(a) = 0. v v

Exemple
P est définie par P(z) = 3z — 1, déterminer I'unique racine de P.
Q est définie sur C par: Q(z) = 2z +z +1. Déterminer les racines de P.

Nous allons voir le réle essentiel joué par les racines d’un polynéme.




Propriété clé

Pour tous nombres complexes a et z, et pour tout entier naturel n non nul, on a 1'identité suivante a
connaitre par cceur :

VY 2 AT = —(z—a)xYlakz" 17k we

Remarque

Cette nouvelle identité permet essentiellement de factoriser les différences de deux puissances de
méme exposant.

Exemples

Factoriser les expressions suivantes: a) z> — 8 ;o b)) z3+i

Remarque : Soit a un nombre complexe.

Un polynome P est dit factorisable par z — a s’il existe un polynéme Q tel que pour tout nombre
complexe z on ait: P(z) = (z — a)Q(2).

Dans le cas ou P est un polynome de degré supérieur ou égal a 1, c’est-a-dire lorsque P est non
constant, on a la relation importante suivante entre le degré de P et celui de Q :
vy deg(Q) = deg(P) — 1. vw

Théoréme fondamental

Soit P un polynéme et @ un nombre complexe.

a est racine de P si et seulement si P est factorisable par z — a.

Preuve :

Remarque concernant les polynémes de degré 2 déja rencontrés :

Si P est défini sur C par: P(z) = az®+bz +¢, ol a, b et ¢ sont des réels avec a# 0, et si A# 0, on sait que P
admet deux racines z; et zz dans C.

Redémontrer le résultat vu en premiére dans le cas réel: pour tout nombre complexe z, on a :
P(z) =a(z—z1)(z — 22).

Application : factoriser dans C le polynéme : P(z) = 3z% + 3z + 1.

Exercice 1
Soit @ un nombre réel et (E) I'équation: z? — 2 cos(a) z+ 1 = 0.

Résoudre cette équation en donnant les solutions sous forme exponentielle. En déduire une
factorisation de la fonction trinéme définie pour tout nombre complexe z par : z? — 2 cos(a) z + 1




Exercice 2
Soit P le polynéme définit pour tout nombre complexe z par: P(z) = z3 + 222 — 1.

1) Trouver une racine réelle évidente de P.
2) En déduire une premiére factorisation de P, puis déterminer les autres racines de P ainsi qu’une
factorisation en produit de trois polynémes de degré 1.

Lemme d’identification

Soit n un entier naturel, et ay, a4, ... ...., a, des nombres complexes.
Pour tout nombre complexe z, P(z) = a,z" + ap_1z" 1 + -+ a1z + a,.
Ona:VzeC(CP(z) =0 Vke[0;n],a, =0.

Cette propriété dit donc qu’une somme de mondémes est nulle si et seulement si chacun des coefficients
des monomes est nul.

Preuve : cf. document ci-joint, il existe des preuves plus simples de ce résultat a bac +1 mais cela
utilise des outils plus sophistiqués.

Cette propriété est a la base de la méthode d’identification que I’on va développer dans 1’exercice
suivant :

Exercice 3
Soit P le polynéme définit pour tout nombre complexe z par: P(z) = z* — 4z% — z + 2.

1) Etablir que 2 est racine de P.
2) En déduire une factorisation de P par deux méthodes différentes.

Exercice 4
Le plan complexe est muni d’un repéere orthonormé direct.
Soit (E) I'équation: z* +2z3 —z—2=0.

a) Vérifier que 1 et -2 sont racines de (E).

b) En déduire que pour tout nombre complexe z, z* + 2z3 —z — 2 = P(z) x Q(z), ou P et Q sont deux
fonctions polynémes de degré 2 que I'on déterminera.

¢) Résoudre alors (E).

d) Les solutions de (E) sont les affixes de quatre points A, B, C et D du plan, avec A ayant pour affixe
1, B ayant pour affixe -2, et C ayant une partie imaginaire positive.

Le quadrilatere ACBD est-il un losange ? Justifier.

Exercice 5
Soit P la fonction polynéme définie sur C par: P(z) = z* — 523 + 722 =5z + 6.

1) Démontrer que pour tout nombre complexe z, on a: P(2) = P(2).
2) Montrer que i est racine de P.
3) En déduire une autre racine de P, puis une factorisation de P.



Exercice 6

On considére la fonction polynéme définie sur C par: P(z) = z* + 4.

1) Démontrer que si un nombre complexe z est racine de P, alors les nombres complexes -z, Z et —Z
sont aussi des racines de P.

2) Justifier que z = 1 + i est racine de P. On pourra commencer par donner la forme exponentielle de
1+

3) En déduire une factorisation de P en produit de facteurs du premier degré.

Théoreme
Soit n un entier naturel non nul.

Tout polynome P de degré n admet au plus n racines dans C.

Preuve :

Citons culturellement I'un des théoremes les plus importants sur les polynéomes appelé le théoreme de
d’Alembert-Gauss : Tout polynéme non constant admet dans C au moins une racine.

Cette propriété est-elle encore vraie dans R ?

Démontrer que tout polynome de degré impair a coefficients réels admet au moins une racine dans R.

II- Racines ni¢mes de lunité

-

Le plan complexe est muni d’un repére orthonormé direct (O ; u ;v ).

Définition
Soit n un entier naturel non nul.

v v On appelle racine n'*™ de I'unité (= le nombre 1), tout nombre complexe z tel que z* = 1. v ¥

En d’autres termes, les racines n'*™* de l'unité sont les racines de la fonction polynéme P définie sur C
par: P(z) = z" — 1.

Exemple

Sin = 1 trouver les racines (1°*™ ) de 'unité. Idem avec n = 2.

Nous allons voir qu’il est possible d’expliciter les racines n'*™ de I'unité, quelle que soit la valeur de

n.




Théoréme

Pour tout entier naturel n non nul, ’équation z™ = 1 admet, dans C, n solutions distinctes qui sont les
nombres complexes suivants: ¥ v

Ainsi, il y a donc n racines n'®™® de l'unité.

Définition

On note U, ’ensemble des racines n'*™ de 1'unité.
iZk_"" 2z
Onadonc: U, = {e n,ke0;n— 1]]}:{wk,k €0;n—1]}, en notant w = e n.

Exemple : Déterminer U,, Us, et U,.

Propriété

Pour tout entier naturel n > 3, les points image des affixes des éléments de U, appartiennent au cercle
unité U, et forment les sommets d’un polygone régulier a n cotés.

Preuve :

Exercice 7 Construction d’un pentagone régulier a la régle et au compas (en DM).

2T

Notons w = e's.

la) Exprimer en fonction de w les racines dans C de I’équation: z° — 1 = 0.

1b) En déduire que: 1 + w + w? + w3 + w* = 0.

2)Onnotea = w+ w* etf = w?+ 3.

a) Montrer que a + f = -1letque aff = -1.

b) En déduire la valeur de a et 5, puis la valeur exacte de cos (2?71) On commencera par expliquer

pourquoi w* = @.

-

3) Le plan complexe est muni d’un repére orthonormé direct (O ; u; v ).
On appelle Ao le point d’affixe 1, K le point d’affixe i, et M le point d’affixe _?1

a) Placer ces points dans le repére.

b) On considere le cercle # de centre M et de rayon MK. Déterminer la valeur de MK, puis déterminer
I'affixe du point P intersection du cercle et de la demi-droite [OAy).

¢) En déduire une construction a ’aide de la regle et du compas des points Ai, As, As, Ay d’affixes
respectives : w, w?, w3 et w*, puis construire le pentagone régulier AjA1AsA3A,.




Exercice 8
Résoudre dans C les équations suivantes :
a) (z+2i)3=1.

L (Zz+1)4_1
) z—1/)

Exercice 9

2T

. . L . . i2r
Soit n un entier naturel supérieur ou égal a 2. On notera w = e n.
Calculer chacune des quantités suivantes :

a) vvLa somme des racines n*"* de I'unité. Ce résultat est classique, a savoir par coeur. v ¥
b) Le produit des racines n**"* de 'unité.

¢) Pour tout entier naturel k compris entre O et n - 1, notons A; le point du plan complexe ayant pour
2m\ K
affixe w* = (elT) .

Soit M un point quelconque du cercle unité U. On appelle z I’affixe du point M.

i) Démontrer que pour tout entier k compris entre O et k — 1, MAZ = 2 — 2Re(z_wk).

i) Déduire de la question a) que Y}-3 MA% est une constante indépendante de I'affixe du point M.
iii) Donner une interprétation géométrique de cette derniere somme.
<

III- Formule du binome de Newton
Définition

Soit n un entier naturel supérieur ou égal a 2.

On (r)appelle que la factorielle de n, que I’on note n ! le produit des entiers naturels compris au sens
large entre 1 et n.

Onadonc:v9vn! =1 X2X ...Xn.v¥
Exemple : calculer :
21= ;0 3= ;o 4l= ; 5!=

On admet que 0! existe et est égal a 1 et de méme 1! est égal a 1. (Sera (a été) expliqué au chapitre
dénombrement de spécialité maths.

On a de facon évidente : pour tout entier naturel n: vv[(n+ DI'=(n+ 1) Xnlve.

En cours de spé maths, on a défini rigoureusement ce que sont les coefficients binomiaux.
Prenons pour point de départ la définition suivante :

Définition

Soit n un entier naturel, et k un entier tel que 0< k < n.

On appelle coefficient binomial “ % parmi n” le nombre noté : (Z) et défini par:



W) =ro—m
vV _k!(n—k)!"
Remarques

- (Z) est un entier naturel : en effet c’est le nombre de parties de cardinal k contenues dans un

ensemble de cardinal n.

-Sik>n,on adonc: (Z) =....

Propriété des coefficients binomiaux

Pour tout entier naturel n et tout k tel que 0O< k < n:

i) vvFormule de symétrie : (Z) = (n f k) vy,

ii)vvFormule du triangle de Pascal : (Z) + (k :l_ 1) = (Z i 1) .V

Preuve :

En revenant a la définition, ¢f. cours de spé maths.

1 S W 1w 35 1
1 6 1520 15 6 1
1 5 21 35 3% 2 # 1
1 8 28 56 70 56 28 8 1
1 9 36 84 126 126 84 36 9 1
1 10 45 120 210 252 210 120 45 10 1

Pour tous nombres complexes a et b, et tout entier naturel n, on a la relation suivante, appelée formule

du binome de Newton :

vvvvy (a+b)" = = veve

Preuve :

Traitons a part lecasoun = 0:




Pour n = 0, (a+b)° = 1,et ¥9_, (2) akpOk = (8) a®h0=1x1x1=1.

Donc la formule est vraie pour n=0.

Pour tout entier naturel n non nul, soit %n) la propriété : (a + b)" = Yi_, (Z) akpnk,

Initialisation : pour n=1, (a + b)* = a + b, et Y1 _, (1) akpl~k = (1) a’ht + (1) a'h®=b+acar:

k 0 1
()=()=1
Donc P(1) est vraie.

Hérédité : Soit n un entier naturel fixé. Supposons que Pn) soit vraie, c’est-a-dire que :

(a+b)" =3Xr (Z) akp™k : (Hypothése de récurrence).

Montrons alors que Pn+1) est vraie, c’est-a-dire montrons que : (a + b)**! = y7+1 (n -Ilc_ 1) akpnri-k,

or,(a+b)"1=(a+b) X (a+b)"=(a+b)x i, (Z) a*b™k d’aprés ’hypothése de récurrence.

En développant :

(a+ b)n+1 =ax i (Z) akp*k L p x i (;:) akpn—k
k=0 k=0
n

(Z) a*b™" 1% car a et b sont indépendants de k.

n
((l + b)n+1 — 2 (Z) ak+1bn—k +
k=0 k=0

-1
(a+b)"1 = nz: ('l:) ak+ipn—k 4 (Z) a™1p0 + (1(;) a®pn1-0 4 zn: (Z) akpn+i-k
=0 k=1

=

-1
(a + b)n+1 — an+1 + nz (Z) ak+1bn—k + i (Z) akbn+1—k + bn+1 car (:)l) — (::) =1.
k=0 k=1

n-1 n
n ; .
Or, en faisant le changement d'indice:j = k + 1, (2) aktipnk = z (]- _ 1) /b U~V eneffet :
k=0 j=1

j=k+1donck =j -1, et comme la variable j est muette, la derniere somme obtenue peut se réécrire
en:

n n n
z (k 1_1 1) a*p™*1-k de sorte que : (a + b)"*1 = a1 + Z (k f 1) akpnti-k 4 Z (Z) akpnti-k 4 pntl
=1 =1 =1

Ainsi en regroupant les deux sommes qui ont méme indice et mémes bornes, et en étant convaincus
que pour toute famille de nombres complexes: $¥ Yl ap + Y51 B = Yp=1(ar + Br)v Y :



(a + b)n+1 = g1 4 Zn: [(k 1_1 1) akpnti-k (1’:) akbn+1—k] 4 pnt1
k=1

n
(a+ b)) = g™l + Z [(k f 1) + (Z)] akpmt1-k 1 pnt1 (factorisation par akp™*t17k).
=1

Or d’apres la formule du triangle de Pascal : ( K f 1) + G{l) = (n ;l(_ 1), de sorte que:

n
(a+ b1 = gt 4 z (n;l“ 1) akpnri-k 4 pnit
=

n+1

n4 1) x @1 x prt1-(HD) = 1 x g1 x p0 = g™+ et que de méme::

En observant que : (

pntl = (n + 1) a®h™17°% on a donc:

0
n+1
(u + b)n+1 — Z (n‘;" 1) akpnti-k
k=0

Ainsi An+1) est vraie.

Initialisée et héréditaire a tout ordre, la propriété f/zn) est donc vraie pour tout entier naturel n non

nul, et encore vraie sin = 0, donc elle est vraie pour tout entier naturel n.

Expliquons enfin pourquoi :

n n

(a+b)" = Z (Z) akpnk = Z (Z) a™kpk

k=0 k=0

Observons que sa premiére formulation fait apparaitre une somme de termes avec des exposants de a
placés par ordre décroissant, tandis que la seconde fait apparaitre une somme de termes avec des
exposants de a placés par ordre croissant (on privilégie en général cette derniére écriture en algébre).

Cette formule, d’'un usage récurrent post bac permet de développer une puissance entiere d’une
somme de deux termes, et aussi de factoriser.

Exemples d’utilisation :

1) Appliquer la formule du binéme de newton avec n = 2 puisn = 3 puis n = 4. Développer (a — b)™.
2) Quel est le coefficient multiplicateur du terme en a®bh3 dans le développement de (a + b)® ?
3) a) Donner la forme développée de: (1 +z)" ot z € C.

b) En déduire la valeur des sommes suivantes :



i) Xk=o (Z)
ii) Th-o (-1 ()

iii) Déduire de i) et ii) les égalités suivantes pourn=>1:Y}_, ( n ) =Y k=0 (2 kn+ 1) = 2n-1

Exercice 10

Soit x un réel et n un entier naturel non nul.

a) Etablir que:e™® + 1 = 2cos (;—C) el
b) En déduire I’écriture algébrique de: (eix + l)n.

¢) En déduire la valeur des sommes suivantes: Y}, (Z) cos(kx) et Y-, (Z) sin(kx) .

Exercice 11

1) Montrer que pour tout entier naturel n, le nombre : A = (V5 + 1)2"+(/5 — 1)?" est entier.
2) n est un entier naturel non nul.

Soit f'la fonction définie sur R par : f{x) = (x+1)~.

n n
En calculant de deux fagons différentes la dérivée de f, établir que : Z k x =Nx 2n71 .

k=1

Exercice 97| On considére le polynéme (a coefficients complexes) :
]- E E
P(X)= % ((X +1)" — (X — z)"].
1
1. Déterminer les racines du polynéme P, a I'aide des racines 5€mes de 1'unité. Vérifier qu’elles
sont toutes réelles, puis que cela pouvait se prouver sans les calculer!

2. Verifier qu’il existe des réels a, b et c tels que P(X) = aX* + bX? + ¢. En déduire les racines
de P sous une autre forme.

‘ L T 2w
). -l - e «l - P e, Wa L s AT = - - .
3. En déduire les valeurs exactes de tan — ) et tan [ —

) i

10



11

|Exercice 99| Soit 'équation (E) : (z 4+ 1)° = (z — 1)°.

1. Développer et simplifier (E), en déduire les racines de (E).

2. Exprimer les solutions de (E) & l'aide des racines 5™ de I'unité. Simplifier ces expressions.

3. En déduire la valeur de tan (%)

|Exercice 107 | Déterminer toutes les racines du polynéme PX)=X"14X"24+  +X2+X+1

n—1 n—1
ke kw n
oll n est un entier, n > 2. Justifier H ‘1 — ¢**| = n. En déduire I'égalité Hsin (?) = gn-1
k=1 k=1

Formule du bindme

Caleuler rapidement, et sans caleulatrice : 999 9997,

10
) 3

Exercice 57| Le coefficient du terme en % de A = (E.rj . £) est de la forme 2030574,
I

Trouver a, b e, d.

Exercice 58| Caleuler les sommes suivantes

Csen () 2 seyen(D) o sex () 6 s-x ()

k=il

Soit des entiers et £ tels que 1 < &k < n.
il

1
1. Vérifier I'égalité k(:) = n (: 1). En déduire la valeur de la somme § = Zk(:)

Lemdp

.. L . . . — 1
2. RHetrouver cette somme i Vaide de la dévivée de la fonction [z flz) = E ( )_:i'_
k=i

. . ] L L
3. En s'inspirant d'une des méthodes précédentes, caleuler T = E ﬁ(ﬁ) .
=y

Exercice 60 Soit la fonction [ o f(x) = (cosr 4 sing)” + (cosr — sing)”
Montrer qu'il existe un polyndme P tel gue f{xr) = Pleoss) pour tout = réel

Exercice 61| Soit n € M*.

, Tt Shtan® x4 [7) tan®

Montrer que, sous réserve d'existence, tan(nr) = [l] ,LH"I = []} :m - = [’] :u: -
n] Iiul'lh-m I+ I:_J tan” r

I 144t 1k
Indication : vérifier taninr) = m (1 + i tan(x)) ] Application : tan(5r) =«

" Re [(1 + ¢ tan(x))m]

Exercice 62| Soit n = Jp 4 2, un entier congru 4 2 modulo 3.

P P -
(n pose S” = z (;:;)_ SI. = E (?.&“} l) el S:g L E (‘“:I: 2)
k=l ¥ k=il %" k=it "

1. Montrer gque 5 = Ss.
2. Simplifier 5, 4+ 5, + Su.
3. On rappelle guon note j = exp(35). Exprimer (14 §)" & Uaide de Sa. 51 et Sa

4. Caleuler 5, 55 et 8y - en donner une expression réelle.



