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Chapitre 7                                                      Polynômes, équations et racines nièmes de l’unité. 

I-Les polynômes 

Définition 

n  et 𝑎0, 𝑎1, …… . , 𝑎𝑛  𝑎𝑛 ≠ 0. 

   

 𝑎𝑛𝑧𝑛 + 𝑎𝑛−1𝑧
𝑛−1 + ⋯+ 𝑎1𝑧 + 𝑎0 = ∑ 𝑎𝑘𝑧

𝑘𝑛
𝑘=0 . 

 𝑎0, 𝑎1, …… . , 𝑎𝑛  

 n 

.

 

 

Exemples 

-   

- 

- 

- 𝑧0

 −4𝑧3 + 8𝑧2 − 11𝑧 + 1

   
1

7
𝑧4

Remarque : 

  

−∞. 

Définition 

 a P(a)   

Exemple  

 


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Propriété clé 

a z n non nul

 

 𝑧𝑛 − 𝑎𝑛 = (𝑧 − 𝑎) × ∑ 𝑎𝑘𝑧𝑛−1−𝑘𝑛−1
𝑘=0  

Preuve : 



Remarque 

Exemples 

 a 𝑧3 − 8 b 𝑧3 + 𝑖

Remarque a

z – a

 − a

                                                                       
  

Théorème fondamental 

a

a a

Preuve : 



 

 az² +bz +c, a, b  c a≠ 0 ∆≠ 0,

ℂ.

  

a(z – z1)(z – z2). 

Application :  ℂ le polynôme ∶ 𝑃(𝑧) = 3𝑧2 + √3𝑧 + 1. 



Exercice 1 

𝛼  𝑧2 − 2cos(𝛼) 𝑧 + 1 = 0.

  𝑧2 − 2cos(𝛼) 𝑧 + 1
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Exercice 2

 𝑧3 + 2𝑧2 − 1.

 

 



Lemme d’identification  

n  et 𝑎0, 𝑎1, …… . , 𝑎𝑛 

 𝑎𝑛𝑧𝑛 + 𝑎𝑛−1𝑧
𝑛−1 + ⋯+ 𝑎1𝑧 + 𝑎0. 

On a : ∀𝑧 ∈ ℂ, 𝑃(𝑧) = 0 ⇔ ∀𝑘 ∈ ⟦0 ; 𝑛⟧, 𝑎𝑘 = 0. 

Preuve 



 

Exercice 3 

 𝑧4 − 4𝑧2 − 𝑧 + 2. 

 

 



Exercice 4 

 z4 + 2z3 − z − 2 = 0.

a) 

b) z4 + 2z3 − z − 2 = P(z) × Q(z)

c) 

d) 

 



Exercice 5 

ℂ  𝑧4 − 5𝑧3 + 7𝑧2 − 5𝑧 + 6.

  𝑃(𝑧̅) = 𝑃(𝑧)̅̅ ̅̅ ̅̅ .
 i
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Exercice 6

ℂ  𝑃(𝑧) = 𝑧4 + 4.

 𝑧̅ −𝑧̅

 i

i

 



Théorème  

n

n n ℂ.

Preuve 



 Tout polynôme non constant admet dans  au moins une racine

 



II- Racines nièmes de l’unité 

  𝑢⃗ 𝑣 

Définition 

n

 n 𝑧𝑛 = 1. 

n ℂ

 𝑧𝑛 − 1.

Exemple 

n 1 n



n

n
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Théorème 

n 𝑧𝑛 = 1 dans n

  

n n

Définition 

𝕌𝑛 n

 𝕌𝑛 = {𝑒
𝑖
2𝑘𝜋

𝑛 , 𝑘 ∈ ⟦0 ; 𝑛 − 1⟧} {𝜔𝑘, 𝑘 ∈ ⟦0 ; 𝑛 − 1⟧ } 𝜔 = 𝑒𝑖
2𝜋

𝑛 .

Exemple 𝕌2, 𝕌3, 𝑒𝑡 𝕌4.



Propriété 

n 𝕌𝑛

𝕌, n

Preuve 



Illustration dans les cas où 

n  n  



Remarque 



Exercice 7 Construction d’un pentagone régulier à la règle et au compas (en DM). 

𝜔 = 𝑒𝑖
2𝜋

5 .

a 𝜔  𝑧5 − 1 = 0.

b  1 + 𝜔 + 𝜔2 + 𝜔3 + 𝜔4 = 0.

𝛼 𝜔 + 𝜔4 𝛽 𝜔² + 𝜔3

a) 𝛼 𝛽 𝛼𝛽

b) 𝛼 𝛽 𝑐𝑜𝑠 (
2𝜋

5
).

𝜔4 = 𝜔̅.

  𝑢⃗ 𝑣 

i
−1

2
.

a) 

b) C 

C 

c) 

  𝜔, 𝜔2, 𝜔3 𝑒𝑡 𝜔4,  
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Exercice 8 

 

𝑎) (𝑧 + 2𝑖)3

𝑏) (
2𝑧 + 1

𝑧 − 1
)
4

= 1.



Exercice 9 

n 𝜔 = 𝑒𝑖
2𝜋

𝑛 .

 

a)  n  
b) n

c) k n Ak

𝜔𝑘 = (𝑒𝑖
2𝜋

𝑛 )
𝑘

 

𝕌. 

i) k k 𝑀𝐴𝑘
2 = 2 − 2𝑅𝑒(𝑧̅𝜔𝑘)

ii) a ∑ 𝑀𝐴𝑘
2𝑛−1

𝑘=0

iii) 



III- Formule du binôme de Newton 

Définition 

n

n n 

n

  n 1 × 2 × … . .× 𝑛  

Exemple  

!=         ;     3!=                 ;    4!=                  ;        5!=                                . 

On admet que 0 ! existe et est e gal a  1 et de me me 1 ! est e gal a  1.

 n (𝑛 + 1)! = (𝑛 + 1) × 𝑛!

 

Définition 

n k ≤ 𝑘 ≤ 𝑛.

 k n  (
𝑛
𝑘
)  
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 (
𝑛
𝑘
) =

𝑛!

𝑘! (𝑛 − 𝑘)!


Remarques 

(
𝑛
𝑘
)  k

n

k n  (
𝑛
𝑘
) =

Propriété des coefficients binomiaux 

n k ≤ 𝑘 ≤ 𝑛 ∶

𝑖) 𝐹𝑜𝑟𝑚𝑢𝑙𝑒 𝑑𝑒 𝑠𝑦𝑚é𝑡𝑟𝑖𝑒 ∶  (
𝑛
𝑘
) = (

𝑛
𝑛 − 𝑘

).   

𝑖𝑖)𝐹𝑜𝑟𝑚𝑢𝑙𝑒 𝑑𝑢 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒 𝑑𝑒 𝑃𝑎𝑠𝑐𝑎𝑙 ∶ (
𝑛
𝑘
) + (

𝑛
𝑘 + 1

) = (
𝑛 + 1
𝑘 + 1

) .  

Preuve 

cf.



Triangle de Pascal donnant les valeurs de 
n

k

 
 
 

 pour tous entiers k et n tels que : 0 k  n 10. 

 

 

 

 

 

 

 

Pour tous nombres complexes a et b, et tout entier naturel n, on a la relation suivante, appelée formule 

du binôme de Newton : 

 (𝒂 + 𝒃)𝒏  =                                       =                                                              

Preuve : 

 

n  
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n  (𝑎 + 𝑏)0 = 1, 𝑒𝑡 ∑ (
0
𝑘
) 𝑎𝑘𝑏0−𝑘0

𝑘=0 = (
0
0
) 𝑎0𝑏0 = 1 × 1 × 1 = 1. 

n

n P(n)  : (𝑎 + 𝑏)𝑛 = ∑ (
𝑛
𝑘
)𝑎𝑘𝑏𝑛−𝑘 .𝑛

𝑘=0  

Initialisation :  n = 1, (𝑎 + 𝑏)1 = 𝑎 + 𝑏, et ∑ (
1
𝑘
)𝑎𝑘𝑏1−𝑘1

𝑘=0 = (
1
0
)𝑎0𝑏1 + (

1
1
)𝑎1𝑏0 = 𝑏 + 𝑎 car ∶ 

(
1
0
) = (

1
1
) = 1.

P

Hérédité : n P(n)  

  (𝑎 + 𝑏)𝑛 = ∑ (
𝑛
𝑘
)𝑎𝑘𝑏𝑛−𝑘 ∶𝑛

𝑘=0   

P(n+1)   (𝑎 + 𝑏)𝑛+1 = ∑ (
𝑛 + 1

𝑘
)𝑎𝑘𝑏𝑛+1−𝑘.𝑛+1

𝑘=0  

Or, (𝒂 + 𝒃)𝒏+𝟏 = (𝒂 + 𝒃) × (𝒂 + 𝒃)𝒏 = (𝒂 + 𝒃) × ∑ (
𝒏
𝒌
)𝒂𝒌𝒃𝒏−𝒌𝒏

𝒌=𝟎  

 

(𝒂 + 𝒃)𝒏+𝟏 = 𝒂 × ∑ (
𝒏
𝒌
)𝒂𝒌𝒃𝒏−𝒌

𝒏

𝒌=𝟎

+ 𝒃 × ∑ (
𝒏
𝒌
)𝒂𝒌𝒃𝒏−𝒌

𝒏

𝒌=𝟎

 

(𝒂 + 𝒃)𝒏+𝟏 = ∑ (
𝒏
𝒌
)𝒂𝒌+𝟏𝒃𝒏−𝒌

𝒏

𝒌=𝟎

+ ∑ (
𝒏
𝒌
)𝒂𝒌𝒃𝒏+𝟏−𝒌

𝒏

𝒌=𝟎

 𝐜𝐚𝐫 𝒂 𝐞𝐭 𝒃 sont indépendants de 𝑘. 

 

(𝒂 + 𝒃)𝒏+𝟏 = ∑ (
𝒏
𝒌
)𝒂𝒌+𝟏𝒃𝒏−𝒌

𝒏−𝟏

𝒌=𝟎

+ (
𝒏
𝒏
)𝒂𝒏+𝟏𝒃𝟎 + (

𝒏
𝟎
)𝒂𝟎𝒃𝒏+𝟏−𝟎 + ∑ (

𝒏
𝒌
)𝒂𝒌𝒃𝒏+𝟏−𝒌

𝒏

𝒌=𝟏

 

(𝒂 + 𝒃)𝒏+𝟏 = 𝒂𝒏+𝟏 + ∑ (
𝒏
𝒌
)𝒂𝒌+𝟏𝒃𝒏−𝒌

𝒏−𝟏

𝒌=𝟎

+ ∑ (
𝒏
𝒌
)𝒂𝒌𝒃𝒏+𝟏−𝒌

𝒏

𝒌=𝟏

+ 𝒃𝒏+𝟏 𝒄𝒂𝒓 (
𝒏
𝟎
) = (

𝒏
𝒏
) = 𝟏. 

O𝑟, 𝑒𝑛 𝑓𝑎𝑖𝑠𝑎𝑛𝑡 𝑙𝑒 𝑐ℎ𝑎𝑛𝑔𝑒𝑚𝑒𝑛𝑡 𝑑′𝑖𝑛𝑑𝑖𝑐𝑒: 𝒋 = 𝒌 + 𝟏, ∑ (
𝒏
𝒌
)𝒂𝒌+𝟏𝒃𝒏−𝒌

𝒏−𝟏

𝒌=𝟎

= ∑(
𝒏

𝒋 − 𝟏)𝒂𝒋𝒃𝒏−(𝒋−𝟏)

𝒏

𝒋=𝟏

: 𝑒𝑛 𝑒𝑓𝑓𝑒𝑡 ∶ 

j = k k j j

 

∑ (
𝒏

𝒌 − 𝟏
)𝒂𝒌𝒃𝒏+𝟏−𝒌, de sorte que ∶

𝒏

𝒌=𝟏

 (𝒂 + 𝒃)𝒏+𝟏 = 𝒂𝒏+𝟏 + ∑ (
𝒏

𝒌 − 𝟏
)𝒂𝒌𝒃𝒏+𝟏−𝒌

𝒏

𝒌=𝟏

+ ∑ (
𝒏
𝒌
)𝒂𝒌𝒃𝒏+𝟏−𝒌

𝒏

𝒌=𝟏

+ 𝒃𝒏+𝟏 

  ∑ 𝛼𝑘
𝑛
𝑘=1 + ∑ 𝛽𝑘

𝑛
𝑘=1 = ∑ (𝛼𝑘 + 𝛽𝑘)

𝑛
𝑘=1  : 
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(𝒂 + 𝒃)𝒏+𝟏 = 𝒂𝒏+𝟏 + ∑ [(
𝒏

𝒌 − 𝟏
)𝒂𝒌𝒃𝒏+𝟏−𝒌 + (

𝒏
𝒌
)𝒂𝒌𝒃𝒏+𝟏−𝒌]

𝒏

𝒌=𝟏

+ 𝒃𝒏+𝟏. 

(𝒂 + 𝒃)𝒏+𝟏 = 𝒂𝒏+𝟏 + ∑ [(
𝒏

𝒌 − 𝟏
) + (

𝒏
𝒌
)]

𝒏

𝒌=𝟏

𝒂𝒌𝒃𝒏+𝟏−𝒌 + 𝒃𝒏+𝟏 (𝒇𝒂𝒄𝒕𝒐𝒓𝒊𝒔𝒂𝒕𝒊𝒐𝒏 𝒑𝒂𝒓 𝒂𝒌𝒃𝒏+𝟏−𝒌).  

 

  (
𝒏

𝒌 − 𝟏
) + (

𝒏
𝒌
) = (

𝒏 + 𝟏
𝒌

),  

(𝒂 + 𝒃)𝒏+𝟏 = 𝒂𝒏+𝟏 + ∑ (
𝒏 + 𝟏

𝒌
)

𝒏

𝒌=𝟏

𝒂𝒌𝒃𝒏+𝟏−𝒌 + 𝒃𝒏+𝟏 

 : (
𝑛 + 1
𝑛 + 1

) × 𝑎𝑛+1 × 𝑏𝑛+1−(𝑛+1) = 1 × 𝑎𝑛+1 × 𝑏0 = 𝑎𝑛+1  

 𝑏𝑛+1 = (
𝑛 + 1

0
)𝑎0𝑏𝑛+1−0    

(𝒂 + 𝒃)𝒏+𝟏 = ∑ (
𝒏 + 𝟏

𝒌
)

𝒏+𝟏

𝒌=𝟎

𝒂𝒌𝒃𝒏+𝟏−𝒌 

P(n+1)

P(n) n 

 n = 0,  n

 

  

(𝒂 + 𝒃)𝒏 = ∑ (
𝒏
𝒌
)

𝒏

𝒌=𝟎

𝒂𝒌𝒃𝒏−𝒌 = ∑ (
𝒏
𝒌
)

𝒏

𝒌=𝟎

𝒂𝒏−𝒌𝒃𝒌 

 

a

a

Exemples d’utilisation : 

n n n (𝑎 − 𝑏)𝑛.

 𝑎5𝑏3 (𝑎 + 𝑏)8  

 a)  : (1 + 𝑧)𝑛 𝑜ù 𝑧 ∈ ℂ. 

b)  
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i) ∑ (
𝒏
𝒌
)𝒏

𝒌=𝟎 . 

ii) ∑ (−𝟏)𝒌 (
𝒏
𝒌
)𝒏

𝒌=𝟎 . 

iii)  i) et ii)  n 1 : ∑ (
𝒏
𝟐𝒌

) =𝒏
𝒌=𝟎 ∑ (

𝒏
𝟐𝒌 + 𝟏

)𝒏
𝒌=𝟎 = 𝟐𝒏−𝟏. 



Exercice 10 

 x  n 

a)   𝑒𝑖𝑥 + 1 = 2𝑐𝑜𝑠 (
𝑥

2
) 𝑒𝑖

𝑥

2 . 

b)   (𝑒𝑖𝑥 + 1)
𝑛

. 

c)   ∑ (
𝑛
𝑘
) cos(𝑘𝑥) et 𝑛

𝑘=0 ∑ (
𝑛
𝑘
) sin(𝑘𝑥) .𝑛

𝑘=0  



Exercice 11 

1) Montrer que pour tout entier naturel n, le nombre : 𝐴 = (√5 + 1)2𝑛+(√5 − 1)2𝑛  est entier. 

2) n est un entier naturel non nul. 

Soit f la fonction définie sur  par : f(x) = (x+1)n. 

En calculant de deux façons différentes la dérivée de f, établir que : 
1

1

2
n

n

k

n
k n

k

−

=

 
 =  
 

  . 
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