Vous soignerez la présentation de votre copie et encadrerez vos résultats. -0,5 si copie mal présentée.

Exercice d'échauffement (1 point)

- a) Traduire en symboles mathématiques: une suite (u_n) converge vers 4.
- b) Dire ce que signifie en français, concernant la suite (v_n) , le fait que : $\lim_{n\to+\infty}v_n=+\infty$.

Exercice I (8 points)

Déterminer, en justifiant, les limites suivantes:

a)
$$\lim_{n \to +\infty} (n^2 + n + \frac{1}{\sqrt{n}})$$
 b) $\lim_{n \to +\infty} \sqrt{n}(-3n^2 + 1)$

b)
$$\lim_{n\to+\infty} \sqrt{n}(-3n^2+1)$$

$$c)\lim_{n\to+\infty}(n^3-n^2+1)$$

d)
$$\lim_{n \to +\infty} (1,25 - 0,25 \times 0,99^n)$$
 e) $\lim_{n \to +\infty} \frac{1 + \frac{1}{n^2}}{2^n}$

e)
$$\lim_{n\to+\infty}\frac{1+\frac{1}{n^2}}{2^n}$$

Exercice II (6 points)

1) (u_n) est une suite telle que, pour tout entier naturel $n: u_n \le -n^2 + 1$.

Déterminer, en justifiant votre réponse, la limite de la suite (u_n) .

- 2) (v_n) est une suite définie pour tout entier naturel $n: v_n = \frac{4 \times (-1)^n + 5n^2}{2n^2 + 1}$.
- a) Monter que pour tout entier naturel $n, \frac{5n^2-4}{2n^2+1} \le v_n \le \frac{5n^2+4}{2n^2+1}$
- b) En déduire, en justifiant, la limite de la suite (v_n) .

Exercice III (5 points)

- (u_n) est la suite définie par : $u_0 = 0.85$ et pour tout entier naturel $n: u_{n+1} = 0.2u_n + 0.4$.
- (V_n) est la suite définie pour tout entier naturel n par : $V_n = u_n 0.5$.
- a) Calculer le premier terme de la suite (V_n) .
- b) Démontrer que la suite (V_n) est une suite géométrique de raison égale à 0,2.
- c) En déduire l'expression de V_n en fonction de n, puis l'expression explicite de u_n ainsi que la limite de la suite (u_n) .