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c) ldem dans la démarche a la question finale de U’exercice suivant !

Exercice lll
x—9
flx) =
2x+4

1) f(x) est calculable si 2x +4 =0.
Or 2x +4 = 0 équivaut a 2x = -4 c’est-a-dire a x = -2.

Ainsi, -2 est la valeur interdite pour f, de sorte que Ds = R-{-2}=]-c0 ;-2[U] — 2; +00].

2)f(0)=‘79 et f(1)= 5:%8 ==

3) Résolvons f(x) = 3 c’est-a-dire: % = 3, ce qui par produits en croix conduit a :
x-9=3(2x+4) et x=-2,doncx — 9 = 6x + 12 et x=-2, donc 5x = -2l etx = _?21: I’antécédent
de 3 par fest donc égal a —T21

4) f(2) = %7, or %7 est différent de 'ordonnée du point A (égale a -1), donc A(2 ; -1) n’appartient pas a

la courbe de f.

De méme f(-1) = —710:_5 qui est égal a 'ordonnée du point B, donc B(-1; -5) appartient a la courbe

représentant f.
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Exercice IV

a) flx) = x* fest définie sur R, vu qu’on peut élever a la puissance 4 n'importe quel réel : Dy = R.
b) h(x) = i +Vx2+1: i est calculable pour tout réel x non nul (pas de division par 0).

De plus, pour tout réel x, 2> 0, donc >+ 1 > 1, donc x*+ 1 n’est jamais négatif, et a ce titre on

peut calculer pour n’importe quel réel x la quantité vx? + 1.

Ainsi, D, = R — {0}.
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|x—5]|=220 conduit sans difficulté a : x > 25 ou x < -15. (Faire un dessin avec la droite graduée).

S =[25; +oo[U]-0 ; -15].
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b)
[x"2025-2026|<-2027 nadmet aucune solution car la valeur absolue d’un réel est positive ou nulle,
elle ne peut donc pas étre strictement inférieure a -2027 qui est négatif.
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Exercice VII
On résout d’abord f(X) =0 qui conduita: X=-4ouX=-2ouX=20uX=4.
On cherche ensuite les éventuels antécédents de ces quatre nombres -4 ;-2 ; 2 et 4 parf.

-4 n’a pas d’antécédents par f; -2 a deux antécédents par f ; 2 a quatre antécédents par f et 4 a deux
antécédents par f. Donc au total, ’équation : f(f(x)) =0 admet: 0 + 2 + 4 +2 = 8 solutions.

Exercice VIl

Pour se faire une idée, on peut commencer par donner a la boite les dimensions 5*7*8, et de regarder ce que
fait le volume du pavé si 'on augmente un seul c6té de 1 unité par exemple.

Sans difficulté, on arrive a : c’est le c6té de 5¢cm, c’est-a-dire le plus petit possible qui doit étre augmenté pour
obtenir un volume plus grand (comparer : 6*7*8=336, 5*8*8=320 et 5*7*9=315).

O<a<b<c etV = abc désigne le volume du pavé initial.
Soit x un réel positif.

Si on augmente la plus petite longueur a de ce nombre x, (en laissant les autres longueurs des c6tés a
'identique), le volume du nouveau pavé créé est V’ = (a+x)bc, et le volume initial a donc augmenté de :
V’-V = (a+x)bc - abc =abc + xbc —abc = bex.

Si on augmente la longueur intermédiaire b de ce nombre x, (en laissant les autres longueurs des c6tés a
lidentique), le volume du nouveau paveé créé est V”’ = (b+x)ac, et le volume initial a donc augmenté de :
V”’ -V = (b+x)ac - abc =abc + xac —abc = acx.

Si on augmente la longueur du plus grand c6té c de ce nombre x, (en laissant les autres longueurs des cotés a
Uidentique), le volume du nouveau paveé créé est V'’’’ = (c+x)ab, et le volume initial a donc augmenté de :
V’”’ -V = (c+x)ab - abc =abc + xab -abc = abx.

On est donc conduit a déterminer, lequel des trois réels bcx, acx et abx est le plus grand.

Or, O<a<b<c, donc comme x>0, on a : b(cx)>a(cx) et acx >abx, donc bcx est le plus grand des trois réels entre
acx, bex et abx.

Donc c’est V' -V la plus grande valeur : il faut donc augmenter la longueur du plus petit coté a pour obtenir
le volume le plus grand possible : réponse A.
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