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Intervalles de R - Inégalités et inéquations \] i

I Chapitre 4 ntel =

i b deux nombres réels. “h

Rappels : solent a et b de R l LA
. WWWMMM2 <35 ®

Ecrire a < b signifie que Lo et o . Oy :/

VoY ~
) ocrant oo Ws s viv s v Exemple : 4,1 > -1 L
Ecrire que a > b signifie que ... PR S W ksl

¢ . y 7 L

Ecrire que a < b signifie que a est inférieur ou éventuellement égal a b. (J«“*xm.m. A o.%& 2y 8
Exemple : x < 2,5 signifie que le réel x peut prendre n'importe quelle valeur inférieure ou égale & 2,5, ou g
encore que le réel x est au plus égal a 2,5. 8

AR / ~ L

Ecrire que a > b signifie que..c\..&h‘c W eu.a.g&% .................................................. g

22 = ’

\ - g

Exemple : y > -1 signifie que. 4 ‘Fn.o&_ Pxn,uL'm. & .s.\‘\.‘ﬁ\‘kn, C‘Aﬂ&t sodan, . Wm Qﬁ&. ol Jr
Enfin les nombres réels positifs sont les nombres strictement supérieurs a 0, et les nombres réels -+
négatifs sont les nombres strictement inférieurs a 0. /’r“
Ecrire : @ > 0 ou dire le réel a est un nombre positif a le méme sens ! _Jl-
De méme, a < 0 revient a dire que le réel a est un nombre négatif. i
Les phrases : @ <b et b > a ont exactement le méme sens mathématique ! Il faut savoir jongler entre ,_’
ces deux écritures ! De fagon imagée : si vous avez moins d'argent que votre frére, c'est que votre frare g

|
a plus d'argent que vous ! —
Définition : comparer deux nombres réels a et b signifie : trouver lequel des deux nombres est supérieur 8 -
a l'autre, ou s'ils sont égaux. ——
Quand on demande de comparer deux réels a et b, on vous demande donc de mettre entre a et b I'un =i
des symboles suivants : < = Oll=—2) e~
Enfin, il arrlve. I?arfms que l'on écrive une double inégalité: 2<x<5 qui est une écriture compacte de e 0
la double condition : x> 2 etx <5,
I -Intervalles de R =
I%ML%I : Soient a et b deux réels tels que a<b, I
‘ensemble de tous les nombres réels i . =
compris ent . NG s

d’extrémités a et b. On le notera [a;b]. PFREREFS o Unglus) ot b Ginlu) est appelé I'intervalle fermé =

SASS CUBIVEIEA ST &‘5}: 4
& eduamds :

|

Ainsi, [a; b] = {x €R /a <x <b).

/

a et b sont aussi appelées leg

e bornes de l'intervalle. a ok [o )9;_[ \:
Représentation sur une droite g |
graduge: Q.4 i

Exemple : [2 ; 3] désigne I'ensemble de tous leg réels compris entye 2 et 3‘3C- S 1
Ecrire : x¢[2 ; 3] équivaut 4 dire: 2< <3 it
On notera donc : x€[2 ; 3] S2<x<8 . 3
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V Dire si chacun des nombres suivants appartient a I'intervalle [-3 ; 5] :
g

g b) 6 5
gt a) - ¢) -3 d) 10°
o ,qe —5 151 €f[3;5] -3e35] ADL [-3,5]
il etb desxgnent des réels tels que a < b. Il existe 9 types d’intervalles de R :
=
7 L'ensemble des réels x tels que : C’est l'intervalle noté : Représentation de l'intervalle
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Remarques fondamentales

Tout d'abord les symboles +x et - ne sont pas des nombres réels. Dans les intervalles contenant l'un
de ces symboles, les crochets seront toujours orientés vers l'extérieur de l'intervalle.

% TN (A I e 5 ) W Tem

Comme on ne peut comparer entre eux que deux nombres réels, on s'interdira d'écrire par exemple :

ou encore

Sur le sens des crochets : Lorsqu'un crochet est dirigé vers l'intérieur de l'intervalle, la borne ou figure ce

crochet appartient a l'intervalle.
Lorsqu un crochet est dirigé vers l'extérieur de l'intervalle, la borne ou figure ce dernier n'appartient

pas a cet intervalle.

Par exemple, pour l'intervalle [2 ; 3 on a: 307230 ok 24 [2;,30
Pour l'intervalle ]-2,5 ; 0],ona: 15 472,53, jq}.« 0€.]es 0]

- Enfin, on peut noter R = :]-OQ,+°QL ............... : R est représenté par toute la droite graduée !

. 1) Traduire en termes d’appartenance a un intervalle :

<ri<le xL[2,4]; br>3e x£.]3;+0].

) A dmre l'appartenance d'un réel x a chacun des intervalles suivants par des inégalités :

; 8] &3(x48; b)x€]-©; al =AM ;o) 2€)-10; 3[-A0LEA3; d) 2€[2 ; +oo[xy 2
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ifﬁrmgn’on 3 : Formuler la réciproque de l'affirmation 2, et déterminer si elle est vraie ou fausse

Défi ition

Seit a, b et x trois nombres réels.
Ondit queaet b encadrentl le réel x si et seulement si a<x<b.
CCTUTUCT de l'encadrement.

/7 ¢

b

a est appelé la .
b est appelé la.. COMAPRIASNRR. de I'encadrement.
Le réel b —a est appelé L AMPLTVUIE. .. de l'encadrement.

xemple

4 < 4,07 < 5 est un encadrement du nombre décimal 4,07 d'amplitude 1.

Lorsqu'on demander d'encadrer un nombre x par deux décimaux, a 10" prés (ol n est un entier

naturel) prés, cela signifie : trouver deux nombres décimaux a et b tels que
-n

....... Q...(I.(&? et &7' S5

Donner un encadrement a I'unité prés de =, puis a 10 -1 prés, puis a 10 -2 prés

3{ W A(‘h’(az ka%GT(}, \e,/\h L’\‘((s,ms)
Définitions B e o dsaank cus¥an. excadsastex. w &
ALTTQ.DJPM) An:\(o.OAP’u}s ;JD‘LPEB

Soit I et J deux intervalles de R.

1) L’ensemble de tous les nombres réels qui appartiennent simultanément (= ala fois) alTeta J est
appelé l'intersection de I et de J: on la note I .\.J et on lit I inter J

9) L’ensemble de tous les nombres réels qui appartiennent 4 au moins 1'un des deux ensembles I ou J

est appelé la réunion de I et de J : on la note I.\..J et on lit I union J

Ilustration :
A L EUY

InJ,
0

Dans chacun des cas suivants, représenter les intervalles I et J sur une droite graduée, puis

déterminer InJ puis IudJ.
Intervalle [ Intervalle J |
Cas 1 [-3; 2] [-1;5] \
Cas 2 ]-0; 2] 10 ; +oof
Ll Cas 3 [4 ; +oo[ 1-5 ; +oo[
Cas 4 ]-05 3[ [-2; oo




e 4 8 A
ok e A e S B
= ] TAS=E42]
: O TUS = 28]
q —
b2 Lk |

, W TIUS :]-oo;~i-oét P
L | | EOS :.]0-,2.] k]
T EEE |

3 | SO | b 3 -]*5;+°O£_

TNTalytel
11 IU3=J‘55*°"E |

||il\\\\\\‘&_\f\\\1\\x\

1) Fabriquer deux intervalles I et J tels que Ind =@

2) Ecrire, en utilisant des intervalles, 'ensemble des réels x tels que :

I a) x#0 b)yx#-letx#2. c)x ¢[l ; 3).
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On peut toujours ajouter (respectivement soustraire) un méme nombre aux deux membres d'une
inégalité, en conservant son sens.

|

a) Iné |
Inégalités et addition
—

Pour tous réelsa,betc,ona:

-

1)Sia € b, alors a+%. € b+.GCi..

9),Sia € balors a=c b= .c.. 3

& vv v Retenir gu'on ne change pas le sens d'une inégalité en y ajoutant (respectivement soustrayant).f N
in méme nombre dans chacun de ses deux membresvwy,

Remarque : Les régles énoncées restent vraies si on met n'importe lequel des symboles : <, > ou =.De %
méme dans les propriétés qui suivent.

B_rtrr 7

Soient a, b, ¢ et d des nombres réels.

Pt |

1) vvva <b équivaut a dire que a=b Qv vy

2)Sia<betsie<d, alors .o *.C.(.&a.—.t-.&. 3

;i é vyvvOn peut done additionner membre a membre deux inégalités de méme sens¥ 9 V.

a-<¥upm&r.o.-&14&s =Neicla) sl L'S&LQ

elY,dencfa+c L & domellorcdlerd
(smbmm»&\{:m = ZL S

 Remargque : La propriété 1) est fondamentale pour la suite : Comparer deux nombres réels a et b
 reviendra done a chercher le signe de la différence a-b!

g =g

‘” Pas de régle pour soustraire membre a membre deux inégalités | !
b | Bydo(Sd Nssls g 307) S-Sy
on | quelques contrexemples : 904 ok \lm Ry

e jamau soustraire membre @ membre des inégalités, méme si elles ont le méme sens. ¢ &
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A xC
ar un méme nombre strictement

b) Inégalités. produits et quotients
1) On peut multiplier ou diviser les deu

v ;
gositit} en conservant le sens de l'inégalité.

pour tout réela,betc:
S

_,a_xc,é,,&.x.c..... et %‘.é,.a_. .................................. vyy

« membres d'une inégalité p

C’est-a-dire que

vvvSia € betsie >0, alors..

Pourquoi ?
galité par un méme nombre strictement

2) On peut multiplier ou diviser les deux membres d'une iné

négatif, en changeant le sens de l'inégalité.

C’est-a-dire que pour tout réela,betc:

vyvSia € betsie <0, alors & F’..Q..X.C..i.&!.xc..... -
¥ J
da Jemh

Méme type de justification qu'au point précédent.

& v v vRetenir qu'on ne change pas le sens d'une inégalité en multipliant (respectivement divisant) par

un méme nombre POSITIF chacun de ses deux membres. YV Y

A contrario, ¥¥ Yon change le sens d'une inégalité en multipliant (respectivement divisant) par un

méme nombre NEGATIF chacun de ses deux membres¥Y ¥ V.

Remargue : Les propositions suivantes sont équivalentes. Ces derniéres seront d'un usage fréquent dans

la résolution des inéquations !

Pour tout nombre ¢ >0: a <b est équivalentea: ax c<b x c.

Pour tout nombre ¢ <0 : a<b est équivalented:ax ¢ > b X c.

1) Sachant que x < 3 et y<-5, que peut-on en déduire pour les expressions suivantes :

a)x-4 b) 3y c) -4x d)x+y
2) Sacha - ¢ i
)Sachant que: -2 < x <letque2 < ¥ <3, déterminer le meilleur encadrement possible de :

"2 8
05" b)x-y

o K Y kIR dige |
| . Ot ao% ik indockf antal ||
|

Lot b atinl il i 2Rk
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soalité X its otients
b} Inégalités. pt oduits et qu . e

une inégalité par un méme nombre strictem
1) On peut multiplier ou diviser les deux membres d e

po ositif, €n conservant le sens de l'inégalité.

out réela, betc:

(C'est-a-dire que pour t %
o
vvvSia < betsie >0, alors....n_xc,.é..&'.x.c..... et .é_.é_g.. .................................. vey

Pourquoi ?
2) On peut multiplier ou diviser les deux membres d'une inégalité par un méme nombre strictement

négatif, en changeant le sens de l'inégalité.
(’est-a-dire que pour tout réela,betc:
@ %
IBE vvvSia €hetsie <0, alors & ¢ cx.x(:i&’xc, etff...__,:.\*...,...‘ .................... vyy
l (]
i 3,
KT—_‘ Méme type de justification qu'au point précédent. &Wh omh
44 & v v vRetenir qu'on ne change pas le sens d'une inégalité en multipliant (respectivement divisant) par
A wn méme nombre POSITIF chacun de ses deux membres. VY Y
4 4 A contrario, ¥¥ ¥on change le sens d'une inégalité en multipliant (respectivement divisant) par un
—- méme nombre NEGATIF chacun de ses deux membres¥ ¥ V.
| = Remarque : Les propositions suivantes sont équivalentes. Ces derniéres seront d'un usage fréquent dans
— la résolution des inéquations !
| Pour tout nombre ¢ >0: a <b est équivalentea: ax c<b X c.
- Pour tout nombre ¢ <0 : a<b est équivalented:ax ¢ > b X c.
!
| 1) Sacha
i achant que x < < = 2diis . :
' que x < 3 et y<-5, que peut-on en déduire pour les expressions suivantes :

a)x—4 b)3y C) -4x d)x+y

2)S P - 8 i
j? ) Sachant que: -2 < x <1et que 2 < y < 3, déterminer le meilleur encadrement possible de :

,,)*_;'.x b)x-y
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1) Montrer que si 0< a<b et si 0 < ¢< d, alors 0< ac <bd. Interpréter géométriquement.

4 2) En déduire un encadrement de (x—1)(x +3) sachant que 2 <x <5.
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- Une inéquation est une inégalité dans laquelle est présente une inconnue, souvent nommée x en
mathématiques.

Résoudre une inéquation, c'est déterminer, si elles existent, toutes les valeurs de x pour lesquelles
1'inégalité écrite est vraie.

~ Exemple : Soit I'inéquation : 2x + 6 <0.

~ Résoudre cette inéquation, c’est déterminer tou

: tes les valeurs de x pour lesquelles I'inégalité
~ 2x + 6 <0 est vraie : on cherche donc toutes les valeurs de «x telles que 2x + 6 soit n

égatif ou nul !
Ces valeurs de x sont appelées les solutions de I'inéquation.

peux inéquations sont dites équivalentes lorsqu’elles ont le méme ensemble de solution]

‘exemple, les inéquations x — 1 >0 et x > 1 sont équivalentes.

1€ inéquation est dite résolue lorsqu'on a isolé l'inconnue x.

s

s régles du paragraphe précédent sur les inégalités vont nous donner un moyen efficace et sr pour
udre des inéquations :

=¥
;?A::j' . ’ . -
cation a 3 ti ’inéquations : Résoudre dans R les inéquations suivantes :

b) —4x < -x+6 €) 4-2(6-2x) > 1 (-14x +9)

- e)2x-6>3-(4-2x) f) #52x=(x-6) g)a* +1 > (x +2)
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~ Pour louer une voiture deux formules sont disponibles : i
~ Formule A : 30€ par jour de location plus 0,20€ par km parcouru. ' i
MB : 50€ par jour plus 0,16€ par km parcouru. o
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Nous allons, a 1'aide d'
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— Tableaux de signes et inéquations

un tableau de signes, résoudre des inéquations un peu plus complexes, du type :

x-1
(2 +1)(x +3)>0 ou encore =50

Qu'est-ce qu'un tableau de signes ?

C’est un tableau qui résume les signes pris par une expression algébrique A(x), selon les intervalles
auxquels appartient x, avec les conventions suivantes : mettre un signe + pour les valeurs de x telles
que 4(x) >0, mettre un signe — pour les valeurs de telles que A(x)

les valeurs de x qui annulent l'expression A(x).

Exemple : x€ J-00 0 ; 400
T

Soit 4(x) une expression algébrique, avec x appartenant a R :

<0, et enfin mettre des zéros sous

On suppose que:

Y A(x)est de signe positif lorsque x appartient & l'intervalle : 1 ; +oof.
v A(x) est de signe négatif lorsque x appartient a l'intervalle : J— ; 1[.

b résume cela o1l construisant le tableau suivant, appelé tableau de signes de l'expression 4(x) :
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§ >eltern tableau de signe donng ci-dessous pour répondre aux questions suivantes :
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a) Pour quelles valeurs de x a-t-on fix) = 0 ?

b) Sur quels intervalles a-t-on flx) >0 ?
¢) Sur quels intervalles a-t-on fix) <0 ?

d) Quel est le signe de f{8) ? Celui de f{0) ?

2) On donne les tableaux de signes d'expressions algébriques A(x) et B(x) définies sur R : e
4o X, | =R —A q : |
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A l'aide d'un tableau de signes, résolvons l'inéquation suivante . (3x + 6)(-2x + 5) > 0.
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Résoudre dans R l'inéquation suivante :
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Au collége, vous aveZ déja entendu parler de 1a distance & 0 d'un nombre.
u )

i o

Soient x et a deux réels.
e distance entre les deux nombres x et ala différence entre lgp_lgigra_nd S e .

=2 On appell
-/%/j‘ ces deux nombres.
' 1 Par exemple, la distance entre 1 et 2,5 est égale a 3..,‘-’ “A=A5%

1= La distance entre -3 et 1 est égale A (('-5‘);

" Si les deux nombres sont égaux, la distance entre ces deux nombres est égale a .Q. ..

=4 i ; 2 taestégalea:{ 4
Ainsi, la distance entre les réels x et a 8 { PN S P
-

On adopte la notation : ':'.-dl (lire valeur absolue de x — a) pour désigner la distance entre les réels x et

By | a.

= i | Exemple : Ecrire sans valeur absolue - |7z = 2| puis |4-— 7zl .

] & 3 i de sfinition

Lorsque @ =0, la distance entre x et 0 esty ¥ ¥ Ix.—OI = lxl = {x Slzig vY
: =Gl (o)

, Ainsi, la distance entre x et 0 est égale a la valeur absolue de x. l

= Exemples
£ [26=28 ; BJ=.3,A... s fol =0

Tt

lP,aur tout réel x, x| > D.Z

Vu que la distan g :
ce entre les réels x et a
est(la méme)que ¢ 5
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Interprétation géoméirique : (¥
| | |
Sur une droite graduée d'origine O, soient M et A les points d'abscisses respectives x et a. jé_\[ﬁ_~
Alors: OM = l:.’ et MA = 'l‘*""‘"l feial p 5 )
Illustration : 5 Tl P t M: h_&;
| G {12551 En o A e pey 1 00 9 AR \__, b 5 Al
G A paly 1 i

Pour tout réel x, on a : «/-x_z - \:.l 2
Pourquoi ?
L =30, ety Ve = x

dsne Vx? = | -
x40, N = - \ F 55 Sl
Equations et valeurs absolues ey

En interprétant la valeur absolue comme une distance, résoudre dans R les équations suivantes |
- d'inconnue x : ade )

]x—z,;4 ¢ |x+5]=0,5 ;|x_4|=_1 . Aiff




—— S S —-ge— =N TSl

T SR ) 1
| B B
|
st i
T
|

I NS EEEmmmmABExEnaS
‘ gaq  HHHHT1 mE R
SEE - IEmEE Q,lw SENPEEEEAEE R
| S aanEEESEEEESRRRERRECERREONT
s e D PR
| m _rk_lr = B (W YO NN AN O I B B R B T ll:Jw |nN.
\ g N | /7 ;
,_ W go % MrTLLI,Eill L VL ; m i 2,
M A e e B
n _. () 1._vl‘ ~ - ). |
Ho r*l | 3401 ! =z %
BT | i
P e T S
RiE IBECECRERE W :
e e 1T 1 p :
FEE e T OEDRENEREE 2 . E
s # Aa & W Aﬁ < ¥ : £
= R & W 2
I & , ». I =% :
Bl _ _. 2 @
M W. £ - - b - + M ]
Jud " e s 1. 5]
RS i A [ m.%
Sk oA ER :
P 3 a, s :
B ..r R m,
: =1 ot o m
e & \ g
2 3 MK ? | m w.
1 . ‘
|
‘_J_; pp————y g L




 EULL I, W W

Inéquation

Soient a et r deux réels avec r >0.

Liensemble des éels x tels que : [x — a| <7 est exactement .\ ixJuxssoNa. -Eo-.a..:ﬂ\. .-\-.-'&-J ....... S
Donc |x — al < r équivaut a dire que va.E%‘.x.:,n.:\-.x.J...ou encore & ALr e . L AN Kurinnne g

Justification : Sk M Na_ pank. & dlesashe. . L :
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1) Résoudre dans R les inéquations suivantes, en interprétant chaque valeur absolue comme une :
<1 ; [x+l<4 ; =523 ; <107 -T7>-2 £
dmre a 'aide de valeurs absolues: x € ]=5;9[. L

ésoudre dans R I'inéquation : x < |x].
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