Vous soignerez la présentation de votre copie et encadrerez vos résultats. Les copies respectant scrupuleusement ces consignes auront un demi-point en plus \odot !

Exercice I (8 points)

Partie A: Etude d'une fonction auxiliaire g.

Soit g la fonction définie sur $[0; +\infty[$ par : $g(x) = x^2e^x - 1$.

- a) Déterminer la limite de g en $+\infty$.
- b) Démontrer que la fonction g est strictement croissante sur $[0; +\infty[$, puis dresser son tableau de variation.
- c) Démontrer qu'il existe un unique réel α appartenant à l'intervalle $[0; +\infty[$ tel que $g(\alpha) = 0$.
- d) Donner un encadrement de α à 10^{-2} près, puis en déduire la valeur approchée de α au dixième près.
- e) Déterminer le signe de g(x) sur $[0; +\infty[$.

Partie B: Etude d'une nouvelle fonction.

Soit f la fonction définie sur]0; $+\infty[$ par : $f(x) = e^x + \frac{1}{x}$.

- a) Déterminer les limites de f en 0 et en $+\infty$.
- b) Démontrer que pour tout réel x > 0, $f'(x) = \frac{g(x)}{x^2}$.
- c) En déduire le sens de variation de f sur]0 ; $+\infty$ [, et dresser son tableau de variation.
- d) Démontrer que la fonction f admet pour minimum le réel $m = \frac{1}{\alpha^2} + \frac{1}{\alpha} \text{ sur }]0 ; +\infty[$.

Exercice II (5 points)

On munit l'espace d'un repère orthonormé $(O; \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$. On note d la droite dont une représentation paramétrique est :

$$d: \left\{ \begin{array}{rcl} x & = & -1+t \\ y & = & 2-t & t \in \mathbb{R}. \\ z & = & 3+t \end{array} \right.$$

On note d' la droite passant par le point B(4; 4; -6) et ayant pour vecteur directeur $\vec{v} \begin{pmatrix} 5 \\ 2 \\ -9 \end{pmatrix}$.

- 1a) Donner les coordonnées d'un vecteur directeur noté \vec{u} de la droite d.
- 1b) Les droites d et d' sont-elles parallèles?
- 1c) Donner une représentation paramétrique de la droite d'.
- 1d) Déterminer avec soin la position relative des droites d et d'.
- 2) Soit Δ la droite dont une représentation paramétrique est : $\begin{cases} x=9+26k\\ y=2-26k\\ z=13+26k \end{cases}$ où $k\in\mathbb{R}$.

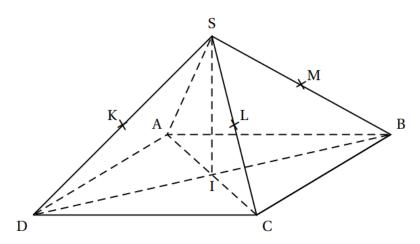
Démontrer que les droites d et Δ sont strictement parallèles.

Exercice III (7 points)

Pour chacune des questions posées, une seule des quatre réponses proposées est exacte.

Sans justifier, reporter sur sa copie le numéro de la question ainsi que la réponse choisie :

Les questions 1 à 4 seulement s'appuient sur la figure ci-dessous :



SABCD est une pyramide régulière à base carrée ABCD dont toutes les arêtes ont la même longueur.

Le point I est le centre du carré ABCD.

On suppose que : IC = IB = IS = 1.

Les points K, L et M sont les milieux respectifs des arêtes [SD], [SC] et [SB].

1. Les droites suivantes ne sont pas coplanaires :

Pour les questions suivantes, on se place dans le repère orthonormé de l'espace $(I; \overrightarrow{IC}, \overrightarrow{IB}, \overrightarrow{IS})$. Dans ce repère, on donne les coordonnées des points suivants :

$$I(0; 0; 0; 0); A(-1; 0; 0); B(0; 1; 0); C(1; 0; 0); D(0; -1; 0); S(0; 0; 1).$$

2. Les coordonnées du milieu N de [KL] sont :

a.
$$\left(\frac{1}{4}; \frac{1}{4}; \frac{1}{4}\right)$$

b.
$$\left(\frac{1}{4}; -\frac{1}{4}; \frac{1}{2}\right)$$

a.
$$\left(\frac{1}{4}; \frac{1}{4}; \frac{1}{4}\right)$$
 b. $\left(\frac{1}{4}; -\frac{1}{4}; \frac{1}{2}\right)$ **c.** $\left(-\frac{1}{4}; \frac{1}{4}; \frac{1}{2}\right)$ **d.** $\left(-\frac{1}{2}; \frac{1}{2}; 1\right)$

d.
$$\left(-\frac{1}{2}; \frac{1}{2}; 1\right)$$

3. Les coordonnées du vecteur \overrightarrow{AS} sont :

$$\mathbf{a.} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$

$$\mathbf{b.} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$

$$\mathbf{c.} \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix}$$

$$\mathbf{d.} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

4. Une représentation paramétrique de la droite (AS) est :

$$\mathbf{a.} \begin{cases} x = -1 - t \\ y = t \\ z = -t \end{cases}$$
$$(t \in \mathbb{R})$$

$$\mathbf{b.} \begin{cases} x = -1 + 2t \\ y = 0 \\ z = 1 + 2t \end{cases}$$

$$\mathbf{c.} \begin{cases} x = t \\ y = 0 \\ z = 1 + t \end{cases}$$

$$\mathbf{d.} \begin{cases} x = -1 - t \\ y = 1 + t \\ z = 1 - t \end{cases}$$
$$(t \in \mathbb{R})$$

Les données suivantes sont valables pour les questions 5. et 6. seulement :

Dans l'espace rapporté à un repère orthonormé $(0; \vec{i}, \vec{j}, \vec{k})$, on considère les points A(1; 0; 2), B(2; 1; 0), C(0; 1; 2) et la droite Δ dont une représentation paramétrique est :

$$\begin{cases} x = 1+2t \\ y = -2+t, t \in \mathbb{R}. \\ z = 4-t \end{cases}$$

5.

Parmi les points suivants, lequel appartient à la droite Δ ?

Réponse A : M(2; 1; -1);**Réponse B :** N(-3; -4; 6); **Réponse C :** P(-3; -4; 2);**Réponse D**: Q(-5; -5; 1).

6.

On considère le point D défini par la relation vectorielle $\overrightarrow{OD} = 3\overrightarrow{OA} - \overrightarrow{OB} - \overrightarrow{OC}$.

Réponse A : \overrightarrow{AD} , \overrightarrow{AB} , \overrightarrow{AC} sont **Réponse B :** $\overrightarrow{AD} = \overrightarrow{BC}$; coplanaires;

Réponse C : D a pour coordonnées **Réponse D :** les points A, B, C et D

(3;-1;-1);

sont alignés.

7. Soient A(2; 1; -1), B(3; 4; 5), C(5; 10; 17) et D(8; 0; 1).

Réponse A : Les points A, B et D sont alignés.

Réponse B: Les points A, B et C définissent un unique plan.

Réponse C : Les points A, B et D définissent un unique plan.

Réponse D: A, B, C et D sont coplanaires.