Exercice I

1. Diminuer de 10 % c'est multiplier par $1 - \frac{10}{100} = 1 - 0, 10 = 0, 9$.

On multiplie donc l'effectif de l'année n, u_n par 0,9 puis on augmente cet effectif de 100: on a donc

$$u_{n+1} = 0.9u_n + 100.$$

- **2.** $u_0 = 2000$, d'où $u_1 = 0.9 \times 2000 + 100 = 1800 + 100 = 1900$;
 - $u_1 = 1900$, d'où $u_2 = 0.9 \times 1900 + 100 = 1710 + 100 = 1810$.
- **3.** *Initialisation* : $1000 < 1900 \le 2000$, soit $1000 < u_1 \le u_0$: l'encadrement est vrai au rang n = 0.

Hérédité : on suppose que pour $n \in \mathbb{N}$, $1000 < u_{n+1} \le u_n$.

En multipliant chaque membre par 0,9, on obtient : $0,9 \times 1000 < 0,9 \times u_{n+1} \le 0,9 \times u_n$ puis en ajoutant 100 à chaque membre on obtient :

$$900 + 100 < 0,9u_{n+1} + 100 \le 0,9u_n + 100$$
, soit :

 $1\,000 < u_{n+2} \le u_{n+1}$: l'encadrement est vrai au rang n+1.

L'encadrement est vrai au rang 0 et s'il est vrai au rang n, il l'est encore au rang n+1: d'après le principe de récurrence pour tout entier naturel n: $1000 < u_{n+1} \le u_n$.

- 4. La récurrence précédente montre que :
 - la suite (u_n) est décroissante $(u_{n+1} \leq u_n)$;
 - la suite (u_n) est minorée par 1 000

La suite (u_n) converge.

- **5.** On considère la suite (v_n) définie pour tout entier naturel n par $v_n = u_n 1000$.
 - **a.** Pour tout entier naturel n, $v_{n+1} = u_{n+1} 1000$, soit $v_{n+1} = 0.9u_n + 100 1000$, ou encore $v_{n+1} = 0.9u_n 900 = 0.9(u_n 1000)$ et enfin :

$$v_{n+1} = 0.9v_n$$
.

Cette égalité vraie pour tout naturel n montre que la suite (v_n) rdt une suite géométrique de raison 0,9.

b. On a donc $v_0 = u_0 - u_0 - 1000 = 2000 - 1000 = 1000$.

On sait que pour tout naturel n, $v_n = v_0 \times q^n$ (avec q = 0,9), soit $v_n = 1000 \times 0,9^n$.

Or
$$v_n = u_n - 1000 \iff u_n = v_n + 1000$$
, soit $u_n = 1000 \times 0, 9^n + 1000 = 1000 (1 + 0, 9^n)$.

c. Comme 0 < 0.9 < 1, on sait que $\lim_{n \to +\infty} 0.9^n = 0$, donc $\lim_{n \to +\infty} 1 + 0.9^n = 1$ et par conséquent :

$$\lim_{n\to+\infty}u_n=1\,000.$$

Cela signifie qu'au bout de nombreuses années la population va se rapprocher de 1 000 individus.

Exercice II

La suite (u_n) est définie sur \mathbb{N} par $u_0 = 1$ et pour tout n, $u_{n+1} = \frac{3}{4}u_n + \frac{1}{4}n + 1$.

1. Pour
$$n = 0$$
, $u_1 = u_{0+1} = \frac{3}{4}u_0 + \frac{1}{4} \times 0 + 1 = \frac{3}{4} \times 1 + 1 = \frac{7}{4}$.
Pour $n = 1$, $u_2 = u_{1+1} = \frac{3}{4}u_1 + \frac{1}{4} \times 1 + 1 = \frac{3}{4} \times \frac{7}{4} + \frac{1}{4} + 1 = \frac{41}{16}$.

2) La suite (u_n) semble être croissante.

Initialisation

Pour n = 0, $u_0 = 1$ et $0 \le 1 \le 1$ donc \mathcal{P}_0 est vraie.

Hérédité

On suppose \mathcal{P}_n vraie, c'est-à-dire : $n \leq u_n \leq n+1$ (hypothèse de récurrence).

on suppose
$$S_n$$
 viale, C est-a-different C is $u_n \leqslant n+1$ (hypothese defectivence).
$$n \leqslant u_n \leqslant n+1 \iff \frac{3}{4}n \leqslant \frac{3}{4}u_n \leqslant \frac{3}{4}(n+1)$$

$$\iff \frac{3}{4}n + \frac{1}{4}n \leqslant \frac{3}{4}u_n + \frac{1}{4}n \leqslant \frac{3}{4}(n+1) + \frac{1}{4}n$$

$$\iff n \leqslant \frac{3}{4}u_n + \frac{1}{4}n \leqslant n + \frac{3}{4}$$

$$\iff n+1 \leqslant \frac{3}{4}u_n + \frac{1}{4}n + 1 \leqslant n + \frac{3}{4} + 1 \iff n+1 \leqslant u_{n+1} \leqslant n + \frac{7}{4}$$

donc $n+1 \leq u_{n+1} \leq n+2$.

On a démontré que la propriété était vraie au rang n + 1.

Conclusion

La propriété est vraie au rang 0, et elle est héréditaire pour tout $n \ge 0$; d'après le principe de récurrence, la propriété est vraie pour tout $n \ge 0$.

On a donc démontré que, pour tout entier naturel n, on a : $n \le u_n \le n+1$.

b. D'après la question précédente :

- Pour tout n, $n \le u_n \le n+1$ donc $n+1 \le u_{n+1} \le n+2$ donc $n \le u_n \le n+1 \le u_{n+1} \le n+2$ d'où on tire $u_n \le u_{n+1}$ ce qui démontre que la suite (u_n) est croissante.
- Pour tout $n, n \le u_n$; or $\lim_{n \to +\infty} n = +\infty$ donc, par comparaison, $\lim_{n \to +\infty} u_n = +\infty$.

c. Pour tout
$$n, n \le u_n \le n+1$$
 donc pour tout $n > 0$, on $a : 1 \le \frac{u_n}{n} \le \frac{n+1}{n}$ c'est-à-dire :

$$1 \leqslant \frac{u_n}{n} \leqslant 1 + \frac{1}{n}.$$

$$\lim_{n \to +\infty} \frac{1}{n} = 0 \text{ donc } \lim_{n \to +\infty} 1 + \frac{1}{n} = 1$$

Donc, d'après le théorème des gendarmes : $\lim_{n\to+\infty} \frac{u_n}{n} = 1$.

4. On désigne par (v_n) la suite définie sur \mathbb{N} par $v_n = u_n - n$

a. Pour tout
$$n$$
, $v_n = u_n - n$ donc $u_n = v_n + n$.

$$v_{n+1} = u_{n+1} - (n+1) = \frac{3}{4}u_n + \frac{1}{4}n + 1 - n - 1 = \frac{3}{4}(v_n + n) - \frac{3}{4}n = \frac{3}{4}v_n + \frac{3}{4}n - \frac{3}{4}n = \frac{3}{4}v_n$$

$$v_0 = u_0 - 0 = 1$$

Donc la suite (v_n) est géométrique de raison $q = \frac{3}{4}$ et de premier terme $v_0 = 1$.

b. On en déduit que, pour tout
$$n$$
, $v_n = v_0 \times q^n = \left(\frac{3}{4}\right)^n$.

Comme
$$u_n = v_n + n$$
, on a $u_n = \left(\frac{3}{4}\right)^n + n$.