Exercice 1

b) On sait que K = milieu de [AB], donc K a pour coordonnées \((x_K, y_K)\)

\[x_K = \frac{x_A + x_B}{2}\]
\[y_K = \frac{y_A + y_B}{2}\]

\[x_K = \frac{4 + 8}{2} = 6\]
\[y_K = \frac{3 + 5}{2} = 4\]

Donc \(K(6; 4)\)
c) On peut calculer les longueurs CA et CB, on trouve sans peine que : $CA = CB = \sqrt{50}$.

Par suite, grâce aux calculs effectués en 1c), on a : $CA = CB = BD = DA = \sqrt{50}$, et par suite, le quadrilatère $ACBD$ est un losange en tant que quadrilatère ayant ses quatre côtés de la même longueur.

3) On a appelé E le cercle de diamètre AB. Si L est un point de E,

- $KL = AK = KB$
- $AB = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$
- $AB = \sqrt{(4 - 8)^2 + (3 - 5)^2}$
- $AB = \sqrt{4(4) + (-2)^2} = \sqrt{16 + 4} = 2\sqrt{5}$
- $KL = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$
- $KL = \sqrt{(6 - (-6))^2 + (4 - 4)^2}$
- $KL = \sqrt{12^2 + 0^2} = 12$
- $KL = 2,56 \neq 2,26 \text{ unités de longueur}$
Exercice III

Soit $A(x_A, y_A)$. B est l'image de $A\left(\frac{7}{3}, \frac{4}{3}\right)$ par la symétrie de centre $I\left(\frac{2}{3}, -\frac{2}{3}\right)$ donc l'intersection de $[AB]$ et de la verticale passant par B est $\frac{2}{3}\times x = \frac{7}{3} + x_B$

Donc $B\left(-\frac{1}{3}, -\frac{8}{3}\right)$.

Exercice III

$A^D(ABC) = \frac{AB \times CH}{2}$

On a $(CH) \perp (AB)$.

Géométrique : $A(-1, 3) ; B(5, 0) ; H(2, 1) ; C(3, 4)$.

$AB = \sqrt{(x_B-x_A)^2 + (y_B-y_A)^2}$

$CH = \sqrt{(x_H-x_C)^2 + (y_H-y_C)^2}$

$AB = \sqrt{(5-(-1))^2 + (0-3)^2}$

$CH = \sqrt{(2-3)^2 + (1-4)^2}$

$AB = \sqrt{36 + 9}$

$CH = \sqrt{1 + 9} = \sqrt{10}$ (unités de longueur).

$AB = \sqrt{30}$ (unités de longueur)

$CH = \sqrt{10}$ (unités de longueur).

Soit $A(x_A, y_A)$.

$\sqrt{30} \times \sqrt{10} = \frac{\sqrt{300}}{2} = \frac{30}{2} = 15$ (unités d'aire).
Exercice IV

(a)
B (1, -2)
C (-3, 4)
E (0, 6)

Il suffit pour démontrer que les droites (BE) et (EC) sont perpendiculaires, de démontrer que le triangle BEC est rectangle en C :

Calculons en préalable le longueur des trois côtés du triangle BEC :

\[BC = \sqrt{(x_C-x_B)^2 + (y_C-y_B)^2} \]
\[BE = \sqrt{(x_E-x_B)^2 + (y_E-y_B)^2} \]
\[EC = \sqrt{(x_C-x_E)^2 + (y_C-y_E)^2} \]

\[BC = \sqrt{(-3-1)^2 + (4-(-2))^2} = \sqrt{52} \]
\[BE = \sqrt{(0-1)^2 + (6-(-2))^2} = \sqrt{65} \]
\[EC = \sqrt{5 + 4} = \sqrt{9} = 3 \]

\[\text{D'une part : } BE^2 = (\sqrt{65})^2 = 65 \]
\[\text{D'autre part : } BC^2 = (\sqrt{52})^2 = 52 \]
\[\text{donc : } BE^2 = BC^2 + CE^2 \]

D'après la théorie du triangle de Pythagore, le triangle BEC est rectangle en C et par suite les droites (BE) et (EC) sont perpendiculaires.

(b) F (2, 1)

Le graphique laisse à penser que FBC n'est pas rectangle. Nous devons vérifier ce fait :

\[BF = \sqrt{(x_F-x_B)^2 + (y_F-y_B)^2} \]
\[BE = \sqrt{(x_E-x_B)^2 + (y_E-y_B)^2} \]
\[EC = \sqrt{(x_C-x_E)^2 + (y_C-y_E)^2} \]

\[BF = \sqrt{(2-1)^2 + (1+2)^2} = \sqrt{1 + 9} = \sqrt{10} \]
\[BE = \sqrt{(0-1)^2 + (6-(-2))^2} = \sqrt{65} \]
\[EC = \sqrt{5 + 4} = \sqrt{9} = 3 \]

D'autre part, on a vu (a) que \(BC = \sqrt{52} \).
Exercice V

Figure
Soit $K = \text{milieu de } (AC) :$
\[K\left(\frac{x_1+x_2}{2}; \frac{y_1+y_2}{2}\right) \]
Soit $L = \text{milieu de } (BD) :$
\[L\left(\frac{x_0+x_2}{2}; \frac{y_0+y_2}{2}\right) \]
Ainsi, KL est confondue (mesurées communes), donc $[AC]$ et $[BD]$ ont le même milieu ; à ce titre, $ABCD$ est bien un rectangle.

De plus:
\[AC = \sqrt{(x_2-x_1)^2 + (y_2-y_1)^2} \]
\[AC = \sqrt{(x_2-x_1)^2 + (y_2-y_1)^2} \]
\[AC = \sqrt{6^2 + 2^2} \]
\[AC = \sqrt{36+4} \]
\[AC = 2\sqrt{10} \]
\[BD = \sqrt{(x_0-x_2)^2 + (y_0-y_2)^2} \]
\[BD = \sqrt{(x_0-x_2)^2 + (y_0-y_2)^2} \]
\[BD = \sqrt{6^2 + 2^2} \]
\[BD = \sqrt{36+4} \]
\[BD = 2\sqrt{10} \]

Ainsi : $AC = BD = 2\sqrt{10}$: les diagonales du polygone $ABCD$ ont la même longueur, et à ce titre, $ABCD$ est un rectangle.
Exercice facultatif

On se place dans le repère $(A ; B ; C)$: donc $A(0; 0) ; B(1; 0)$ et $C(0; 1)$. $D(a ; b)$.

\[M = \text{milieu de } [AB], \text{ donc } N\left(\frac{x_{A} + x_{B}}{2}, \frac{y_{A} + y_{B}}{2}\right) = N\left(\frac{0 + 1}{2}, \frac{0 + 0}{2}\right) = N\left(\frac{1}{2}, 0\right) \]

\[N = \text{milieu de } [BC], \text{ donc } N\left(\frac{x_{B} + x_{C}}{2}, \frac{y_{B} + y_{C}}{2}\right) = N\left(\frac{1 + 0}{2}, \frac{0 + 1}{2}\right) = N\left(\frac{1}{2}, \frac{1}{2}\right) \]

\[P = \text{milieu de } [CD], \text{ donc } P\left(\frac{x_{C} + x_{D}}{2}, \frac{y_{C} + y_{D}}{2}\right) = P\left(\frac{0 + a}{2}, \frac{1 + 0}{2}\right) = P\left(\frac{a}{2}, \frac{1}{2}\right) \]

\[Q = \text{milieu de } [DA], \text{ donc } Q\left(\frac{x_{D} + x_{A}}{2}, \frac{y_{D} + y_{A}}{2}\right) = Q\left(\frac{a + 0}{2}, \frac{0 + 1}{2}\right) = Q\left(\frac{a}{2}, \frac{1}{2}\right) \]

\[V = \text{milieu de } [MP], \text{ donc } V\left(\frac{x_{M} + x_{P}}{2}, \frac{y_{M} + y_{P}}{2}\right) = V\left(\frac{1 + \frac{a}{2}}{2}, \frac{0 + \frac{1}{2}}{2}\right) \]

\[W = \text{milieu de } [NQ], \text{ donc } W\left(\frac{x_{N} + x_{Q}}{2}, \frac{y_{N} + y_{Q}}{2}\right) = W\left(\frac{\frac{1}{2} + \frac{a}{2}}{2}, \frac{\frac{1}{2} + \frac{1}{2}}{2}\right) \]

\[V = \text{milieu de } [MP], \text{ donc } V\left(\frac{x_{M} + x_{P}}{2}, \frac{y_{M} + y_{P}}{2}\right) = V\left(\frac{1 + \frac{a}{2}}{2}, \frac{0 + \frac{1}{2}}{2}\right) \]

\[W = \text{milieu de } [NQ], \text{ donc } W\left(\frac{x_{N} + x_{Q}}{2}, \frac{y_{N} + y_{Q}}{2}\right) = W\left(\frac{\frac{1}{2} + \frac{a}{2}}{2}, \frac{\frac{1}{2} + \frac{1}{2}}{2}\right) \]

2d) \text{Verifions les mêmes coordonnées, donc sont confondus.}

\[[MP] + [NQ], \text{ donc } V\left(\frac{1 + \frac{a}{2}}{2}, \frac{0 + \frac{1}{2}}{2}\right) = W\left(\frac{\frac{1}{2} + \frac{a}{2}}{2}, \frac{\frac{1}{2} + \frac{1}{2}}{2}\right) \]

\[\text{Conclusion : quelle que soit la nature du quadrilatère } ABCD, \text{ le quadrilatère } MNPA \text{ s'appuyant sur le milieu des côtés de } ABCD \text{ est toujours un parallélogramme.} \]