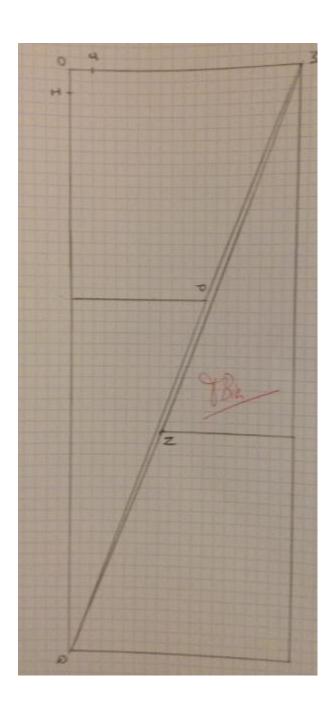

Exercice I

Dec P(A) - Into dienes favorables _ 5 = 1 = 5,2] not total diame. Le teléan pradur fair apparants les Couple deux à deux débuit! (0-71); (1-72); (2-73); (3-74) sont les sont points de A dont absorbe et critoire. Aont copies ento out 4 circles à cl y a donc 4 points favorable à la victoire de l'iver Dec P(B) = 4 = 0,16.		
De P(A) = mb d'ans favorbles = 5 = 1 - 6/2 nb total d'anne 25 5 6/2 le tablem prader foir opposition les Coigle deux à deux districts! (0-71); (1-72); (2-3); (3-14) sont les sont point le 1 deux absurbe et ordonne Nont copies ents out quirles il y a donc 4 points favorble à la victionit de l'iver De P(B) = 4 = 6,16.	2a) a content 5 points à coordonnées entrès c	Conce et out (with
Le teben pradu fair paratte 25 Coigle deux à deux déhict! (0,1); (1,2); (2,3); (3,4) sont les seus point le A deux absorbe et ordonne. Dont copuses ents out quireles à cl y a donc 4 points favorable à la nélimbre de l'étres. Dec [P(B)] = 4 = 0,16.	0 0000	
le teben prédent feit eprovaite les Congle deux à deux débuilt! 2b) A a pour équition: y = x+1. (0,1); (1,2); (2,3); (3,4) sont les sont point de l'aboute et continue. Nont corpose entre out 4 corles à il y a donc 4 points favorable à la rélation de l'étres de	war (A)	5 = 1 = 6,2
Le taken prader for apparato 25 Corple deux à deux détrict! (0,1); (1,2); (2,3); (3,4) sont les sont le A der absaix et ordinage Nont corpres ento out quireles à el y a donc 4 points favorable à la réliabile de l'éver De [P(B)] = 4 = 0,16.		XI .
(0,1); (1,2); (2,3); (3,4) sont les suls point de der absorte et ordonnée. Nont copies ento out quielles à il y a donc 4 points favorité à la vielembre de l'ivere de l'élève d		le teben prader for apparate &c
(0,1); (1,2); (2,3); (3,4) sont les suls point de der absorte et ordonnée. Nont copies ento out quielles à il y a donc 4 points favorité à la vielembre de l'ivere de l'élève d		Covole deux à deux dipoli
Don't comprese ento out quieles à il y a donc 4 points favorité à Cantelintin de l'iver	31) 4 (2.11	1 Carlotte
(0-1); (1-2); (2-3); (3-4) sont les sub parts de l'en absurte et ordonne. Nont corpuses ento out quizlus à il y a donc 4 parts favorité à la vielentité de l'iver de l'élève de	as a pm junn; y = x+1.	
De (B) = 4 = 0,16.	(0-1); (1-2); (2-3); (3-4) sout les	Mark on To be A of the A
Dec (B) = 4 = 0,16.		Joseph M. I Can absolf at ordones
2 ((b) = 15 = (0,16)	Nont comes ento our quilles il y a de	one 4 points paromete à la récliation de l'ille
	0 (00) 4 - 50	8
	25 (0)=	
20 500		
	20 500	
20) Seuls les points (0, 2) et (2,0) sont seu C avec acabserse et ordonnée corporation	1 tuls & points (0, 2) et (2,0) fort su	C sake as absurk at ordonnes comme colo
0 er a 2 (0/2) - 2 (-0)	Oer a 2 (0/c) 2	
oer 4. De (P(c)) = 2 = 10,08	20	= 10,00

Exercice II


Exercice III

L'ordonnée à l'origine est égale à 6 : on est donc dans le cas B ou bien E.

Le coefficient directeur est positif, donc la bonne réponse est la E.

Exercice IV

Defi and figure d = dx d = 64 ans figure 2 = 5 x d3 = 65 Bradon les aus des deux figures me amil yes egale, along qu'alles sont compresses des mires mous signes A, B, C et D Si an calcule I am des hianglaset des trafines dans la figure 2, an obtient 64 st non 65/ triangle A are = 12 triangle & are + 12 - 12x2 + 20x2 + 64 Tracking & ans " 20" tracine Dane . 20 Para compresche il faut agrendie la ugue I on peut com qu'il existent un espere entre les trangles et les trajeges, is a set pas would dans I knowed can it set ties getet. Dimonstation On se place dens un regine O. I. J. MN= | xn-xn, yn-yn) =1-16-0 , 4- do 1 1

HQ = (xa-xn; ya-yu) = (26-0; 0-do) = (26; -do)
16 26 (-6)x 26 = -456 -6 -10 46 x(-40) = -460
te n'est dans jas un talleau de pajartionalité
Ma et Mil me sont par proportionels ; et dans pas colineanes
tala explique l'espace entre les figures,

Il ne s'agit donc pas d'un paradoxe mais d'un effet de vue!

Exercice V

Exercise I a) $\int_{5x-4y=8}^{3x+y=15} \iff \int_{5x-4(15-3x)=8}^{y=15-3x} \iff \int_{4=45-3x}^{6x-4(15-3x)=8} \iff \int_{4=45-3x}^{6x-4(15-3x)=8}$ J= 2(4;3)}. Rg: Dow la révolution du système, il fout conserver dours lignes au système tout au long des étapes. b) } 9x+84=-60 (41) Ici, anem des coefficients des x et y me vont 10n-1, donc on 12x-7y=450 (62) va procéder par la méthode de Combinación. Nossallors "Elimener" les y: 56 gt un multiple commun à 8 et 7: 8×7=56. afore on muchyle par 7(41) et par 8(42): $\begin{cases} 9x + 8y = -60 \\ 12x - 7y = 450 \end{cases} \begin{cases} 7(9x + 8y) = 7x(-60) \\ 8(12x - 7y) = 8x450 \end{cases} \begin{cases} 63x + 56y = -420 \\ 96x - 56y = 3600 \end{cases}$ On remplace esti la nouvelle lige 2 du dernier système obtem par (L1) + (L2):56y+(-56y)=0! (=) | 63x +56y = -420 100 ssH $\begin{cases} 63x + 56y = -420 \\ (63x + 56y) + (96x - 56y) = -420 + 3600 \end{cases}$ S= }(20; -30) }.

e)
$$)8x-8y=4$$
 $(38(x-y)=4)$ $)x-y=\frac{4}{8}=0.5$ $)x-y=\frac{23}{1.15}=\frac{2}{1.15}$ $)x-y=\frac{23}{1.15}=\frac{2}{1.15}$ (deup months eigen a unimal hoise in the eigens).

Exercice VI

(a) Notions
$$x$$
 la mote obtenue a l'évrit, et y alle obtenue a l'ord:

On a:
$$\int \frac{6x + 4y = 9}{6+4} = 9$$

$$\int \frac{6x + 4y = 9}{4x + 6y} = 10$$

$$\int \frac{6x + 4y = 9}{4x + 6y} = 10$$

$$\int \frac{6x + 4y = 9}{4x + 6y} = 10$$

$$\int \frac{6x + 4y = 9}{4x + 6y} = 10$$

$$\int \frac{6x + 4y = 9}{4x + 6y} = 10$$

$$\int \frac{6x + 4y = 9}{4x + 6y} = 10$$

$$\int \frac{4x + 6y = 100}{4x + 6y} = 10$$

$$\int \frac{4x + 6y = 135}{4x + 6y} = 100$$

$$\int \frac{9x + 6y = 135}{4x + 6y} = 100$$

$$\int \frac{4x + 6y = 135}{4x + 6y} = 100$$

$$\int \frac{3x + 6y = 135}{4x + 6y} = 100$$

$$\int \frac{3x + 6y = 135}{4x + 6y} = 100$$

$$\int \frac{3x + 6y = 135}{4x + 6y} = 100$$

$$\int \frac{3x + 6y = 135}{4x + 6y} = 100$$

$$\int \frac{3x + 6y = 135}{4x + 6y} = 100$$

$$\int \frac{3x + 6y = 135}{4x + 6y} = 100$$

$$\int \frac{3x + 6y = 135}{4x + 6y} = 100$$

$$\int \frac{3x + 6y = 135}{4x + 6y} = 100$$

$$\int \frac{3x + 6y = 135}{4x + 6y} = 100$$

$$\int \frac{3x + 6y = 135}{4x + 6y} = 100$$

$$\int \frac{3x + 6y = 135}{4x + 6y} = 100$$

$$\int \frac{3x + 6y = 135}{4x + 6y} = 100$$

$$\int \frac{3x + 6y = 135}{4x + 6y} = 100$$

$$\int \frac{3x + 6y = 135}{4x + 6y} = 100$$

$$\int \frac{3x + 6y = 135}{4x + 6y} = 100$$

$$\int \frac{3x + 6y = 135}{4x + 6y} = 100$$

$$\int \frac{3x + 6y = 135}{4x + 6y} = 100$$

$$\int \frac{3x + 6y = 135}{4x + 6y} = 100$$

$$\int \frac{3x + 6y = 135}{4x + 6y} = 100$$

$$\int \frac{3x + 6y = 135}{4x + 6y} = 100$$

$$\int \frac{3x + 6y = 135}{4x + 6y} = 100$$

$$\int \frac{3x + 6y = 135}{4x + 6y} = 100$$

$$\int \frac{3x + 6y = 135}{4x + 6y} = 100$$

$$\int \frac{3x + 6y = 135}{4x + 6y} = 100$$

$$\int \frac{3x + 6y = 135}{4x + 6y} = 100$$

$$\int \frac{3x + 6y = 135}{4x + 6y} = 100$$

$$\int \frac{3x + 6y = 135}{4x + 6y} = 100$$

$$\int \frac{3x + 6y = 135}{4x + 6y} = 100$$

$$\int \frac{3x + 6y = 135}{4x + 6y} = 100$$

$$\int \frac{3x + 6y = 135}{4x + 6y} = 100$$

$$\int \frac{3x + 6y = 135}{4x + 6y} = 100$$

$$\int \frac{3x + 6y = 135}{4x + 6y} = 100$$

$$\int \frac{3x + 6y = 135}{4x + 6y} = 100$$

$$\int \frac{3x + 6y = 135}{4x + 6y} = 100$$

$$\int \frac{3x + 6y = 135}{4x + 6y} = 100$$

$$\int \frac{3x + 6y = 135}{4x + 6y} = 100$$

$$\int \frac{3x + 6y = 135}{4x + 6y} = 100$$

$$\int \frac{3x + 6y = 135}{4x + 6y} = 100$$

$$\int \frac{3x + 6y = 135}{4x + 6y} = 100$$

$$\int \frac{3x + 6y = 100}{4x + 6y} = 100$$

$$\int \frac{3x + 6y = 100}{4x + 6y} = 100$$

$$\int \frac{3x + 6y$$

Dist x la longueur du restangle initial, et y de largen.

Sort x la longueur du restangle initial, et y de largen.

Disserver de 20% un nombre restert à le multiplier par 1,2

Disserver de 20% un nombre restert à le multiplier par 9,8.

Donc:
$$2(x+y)=20$$

 $2(1/2x+0,8y)=20x1/1$ $(x+y)=10$
 $1/2x+0,8y=11$ $(x+y)=10$
 $1/2x+0,8y=11$

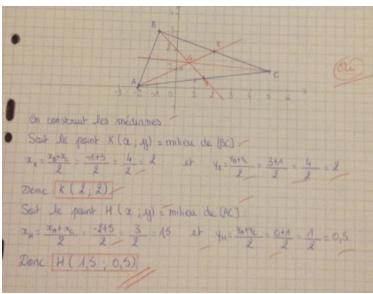
Ce restangle a pour diversions withicles 7,5cm en longueur et 2,5cm en lengueur.

Soit x la masse molaire du Carbone et y celle de l'hydrogène: C12 H22 O11 a pour marse molaire 342g. mol , Lone: 12x + 22y + 11x16 = 342 Va que tous les cofficients sont paixo : =2 12x+22y=166)=2 6x +111 = 83 C4H7N3 O a pour mass molaire M3 g. mol 1, done: 4x+7y+3x14+16=113 4x+7y=113-3x14-16=113-42-16=55 Dou le système: $\int 6x + 11y = 83$ que l'on résent per millode de Combinaison: 4x + 7y = 55On va Elither les x: 12 est multiple commun de 6 et 4, 12 = 6 x 2 et 12 = 4 x 3, donc on multiplie la ligne 1 par 2 et la ligned par 3: $\begin{cases} 2(6x+11y) = 2x83 & \text{ond who pre} \\ (4x+7y) = x55 \end{cases} \begin{cases} 2(6x+11y) = 2x83 & \text{ond who pre} \\ (4x+7y) = x55 \end{cases} \begin{cases} 12x+22y = 166 & (L_1) \\ 12x+21y = 165 & (L_2) \end{cases}$ On regale entire (2) pure (21)-(2): $\begin{cases} (12x + 22y) - (12x + 21y) = 166 - 165 \\ 12x + 21y = 165 \end{cases}$ $\begin{cases}
y = 1 \\
4 = 1
\end{cases}$ $\begin{cases}
y =$

Exercice VII

1) On a, pour tout réel x, f(x) = ax+b. On doit trouver la valeur de a et b sachant que f(2)=0 et f(3)=6.

On traduit ces données par le système suivant : $\begin{cases} 2a+b=0\\ 3a+b=6 \end{cases} \text{ qui se résout instantanément } (L2-L1) \text{ et donne} : \\ a=6 \text{ et } b=-12. \ S=\{(6\text{ ;-}12)\}.$


Donc f(x) = 6x - 12.

2) Deux droites parallèles ont le même coefficient directeur, ici la droite d'équation y = x - 2023 a pour coefficient directeur m = 1.

Donc en notant (d) la parallèle à cette dernière droite passant par C(2021~;2022), (d) a pour équation réduite : y = x + p.

C(2021~;2022) appartient à (d) équivaut à dire que : 2022 = 2021 + p, donc p = 1 et par suite (d) a pour équation réduite : y = x+1.

Exercice VIII

古門以東西與於京都西國 西國於西國斯里斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯
A \in $\mathbb{Q}(80)$ et $\mathfrak{f}(-2)=0$ \mathfrak{f} est une fonction affine de la forme. $\mathfrak{g}=ax+b$. On bout que $k\in 8\mathfrak{f}$ $a_1=\frac{4}{2}(-2)=\frac{4}{2}$ $a_2=0$, $a_3=0$, $a_4=0$, $a_4=$
O = -1 + le donc y a pour équation B $\in \mathcal{C}_{g}(x)$ et $g(-1)$: 3 g est une fonction affine de la forme y = $ax + b$: On boil que $H \in \mathcal{B}_{g}$: $x_{H} = x_{H} + x_{H} = 0.5 - 3 = -2.5 = -1$ donc $y = -1x + b$
On sair que B (-1, 3) € 8g, danc an Jemphace: 3 = -1x (-1) + 2 danc (g a pour aquation: 4 = 3 - 1 = 2 danc (g a pour aquation:
G est le point d'untersection des médianes usues des points A et B Trouver les coordonnées de G revient à résondre le système (y=0,5 α +1) (y=1,6 α +1) (y=1,6 α +1) (x=1)
$\begin{cases} a = \frac{A}{1.5} \\ y = \frac{A}{0.5} \times (\frac{A}{1.5}) + A \end{cases} = \begin{cases} a = \frac{A}{1.5} \\ y = \frac{A}{0.5} \times (\frac{A}{1.5}) + A \end{cases} = \begin{cases} a = \frac{A}{1.5} \\ y = \frac{A}{0.5} \times (\frac{A}{1.5}) + A \end{cases} = \begin{cases} a = \frac{A}{1.5} \\ y = \frac{A}{0.5} \times (\frac{A}{1.5}) + A \end{cases} = \begin{cases} a = \frac{A}{1.5} \\ y = \frac{A}{0.5} \times (\frac{A}{1.5}) + A \end{cases} = \begin{cases} a = \frac{A}{1.5} \\ y = \frac{A}{0.5} \times (\frac{A}{1.5}) + A \end{cases} = \begin{cases} a = \frac{A}{1.5} \\ y = \frac{A}{0.5} \times (\frac{A}{1.5}) + A \end{cases} = \begin{cases} a = \frac{A}{1.5} \\ y = \frac{A}{0.5} \times (\frac{A}{1.5}) + A \end{cases} = \begin{cases} a = \frac{A}{1.5} \\ y = \frac{A}{0.5} \times (\frac{A}{1.5}) + A \end{cases} = \begin{cases} a = \frac{A}{1.5} \\ y = \frac{A}{0.5} \times (\frac{A}{1.5}) + A \end{cases} = \begin{cases} a = \frac{A}{1.5} \\ y = \frac{A}{0.5} \times (\frac{A}{1.5}) + A \end{cases} = \begin{cases} a = \frac{A}{1.5} \\ y = \frac{A}{0.5} \times (\frac{A}{1.5}) + A \end{cases} = \begin{cases} a = \frac{A}{1.5} \\ y = \frac{A}{0.5} \times (\frac{A}{1.5}) + A \end{cases} = \begin{cases} a = \frac{A}{1.5} \\ y = \frac{A}{0.5} \times (\frac{A}{1.5}) + A \end{cases} = \begin{cases} a = \frac{A}{1.5} \\ y = \frac{A}{0.5} \times (\frac{A}{1.5}) + A \end{cases} = \begin{cases} a = \frac{A}{1.5} \\ y = \frac{A}{0.5} \times (\frac{A}{1.5}) + A \end{cases} = \begin{cases} a = \frac{A}{1.5} \\ y = \frac{A}{0.5} \times (\frac{A}{1.5}) + A \end{cases} = \begin{cases} a = \frac{A}{1.5} \\ y = \frac{A}{0.5} \times (\frac{A}{1.5}) + A \end{cases} = \begin{cases} a = \frac{A}{1.5} \\ y = \frac{A}{0.5} \times (\frac{A}{1.5}) + A \end{cases} = \begin{cases} a = \frac{A}{1.5} \\ y = \frac{A}{0.5} \times (\frac{A}{1.5}) + A \end{cases} = \begin{cases} a = \frac{A}{1.5} \\ y = \frac{A}{0.5} \times (\frac{A}{1.5}) + A \end{cases} = \begin{cases} a = \frac{A}{1.5} \\ y = \frac{A}{0.5} \times (\frac{A}{1.5}) + A \end{cases} = \begin{cases} a = \frac{A}{1.5} \\ y = \frac{A}{0.5} \times (\frac{A}{1.5}) + A \end{cases} = \begin{cases} a = \frac{A}{1.5} \\ y = \frac{A}{0.5} \times (\frac{A}{1.5}) + A \end{cases} = \begin{cases} a = \frac{A}{1.5} \\ y = \frac{A}{0.5} \times (\frac{A}{1.5}) + A \end{cases} = \begin{cases} a = \frac{A}{1.5} \\ y = \frac{A}{0.5} \times (\frac{A}{1.5}) + A \end{cases} = \begin{cases} a = \frac{A}{1.5} \\ y = \frac{A}{0.5} \times (\frac{A}{1.5}) + A \end{cases} = \begin{cases} a = \frac{A}{1.5} \\ y = \frac{A}{0.5} \times (\frac{A}{1.5}) + A \end{cases} = \begin{cases} a = \frac{A}{1.5} \\ y = \frac{A}{0.5} \times (\frac{A}{1.5}) + A \end{cases} = \begin{cases} a = \frac{A}{0.5} \\ y = \frac{A}{0.5} \times (\frac{A}{1.5}) + A \end{cases} = \begin{cases} a = \frac{A}{0.5} \\ y = \frac{A}{0.5} \times (\frac{A}{0.5}) + A \end{cases} = \begin{cases} a = \frac{A}{0.5} \\ y = \frac{A}{0.5} \times (\frac{A}{0.5}) + A \end{cases} = \begin{cases} a = \frac{A}{0.5} \\ y = \frac{A}{0.5} \times (\frac{A}{0.5}) + A \end{cases} = \begin{cases} a = \frac{A}{0.5} \times (\frac{A}{0.5}) + A \end{cases} = \begin{cases} a = \frac{A}{0.5} \times (\frac{A}{0.5}) + A \end{cases} = \begin{cases} a = \frac{A}{0.5} \times (\frac{A}{0.5}) + A \end{cases} = \begin{cases} a = \frac{A}{0.5} \times (\frac{A}{0.5}) + A \end{cases} = \begin{cases} a = \frac{A}{0.5} \times (\frac{A}{0.5}) + A \end{cases} = \begin{cases} a = \frac{A}{0.5} \times (\frac{A}{0.5}) + A \end{cases} = \begin{cases} a = \frac{A}{0.5} \times (\frac{A}{0.5}) + A $

Soit G(2/3; 4/3).

```
En nomine A la deste paratir pair C(5, 1)

The point G(\frac{1}{1}, \frac{3}{3}) \in BA SSI y: have as + 6 SSI \frac{3}{15} and the cost inches after of Equation \frac{3}{15} and \frac{3}{15} and
```

Exercice IX

Le tracé est évident : il faut surligner en couleur l'axe des abscisses, celui des ordonnées et la droite d'équation : y = -x.

Tout d'abord, la droite passe pur le centre II (75;30) du cencle, donc elle le partage en deux dessis disque de mér ave, indépendent de sa pente.

On charle donc le pertonde la droité jasset par $\mathcal{N}(75,30)$ et qui divoir l'aix du netropie ABCD en deux partie de mise ouve, où O(0,0); B(100,0); C(100,50); D(0,50).

Sit (A) celle doit : elle a por equelin rédute , y = mz + p $2(75,30) \in (A) \iff 30 = 75m + p \iff p = 30 - 75m$

K (A) ST L

Dapor Equition: y= mx +30-75m

 Δ remarke l'ape des ordonnées (lorsque x=0) en un point $K(0/y_k)$ avec: $y_k = m \times 0 + 30 - 75m$ donc en K(0/75m + 30).

Arenoutre la doit verhiele d'équathr, z = 100 en le point L(100; 4L) et 4L = 100 m + 30 - 75m = 25m + 30 = L(100; 25m + 70).

Is deep tropers OKLB et CDKL ont mer oure si et soulers i OK = CL (on OBCPSYON redge, et ces deep tropers at not houten) - (Set pur abijuet, OK = LC)

OK (O-75m+30) et [C) (50-(25m+30) = -25m+20)

Parsont: off-LC (-) -75m+30 = -25m+20 (-) 30-20 = 75m-25m (-) 50m = 10 (-) m = 1

Répose A: La port de la donte dentire qui partage la 700 en dans airs épole Nout m= 1.