Correction de la session blanche 2023

Exercice n°1:

Partie 1

- 1. D'après la courbe représentant la fonction dérivée f':
 - la fonction f' est positive sur $]-\infty$; -1[donc la fonction f est croissante sur $]-\infty$; -1[;
 - la fonction f' est négative sur]-1; $+\infty[$ donc la fonction f est décroissante sur]-1; $+\infty[$.
- **2.** D'après la courbe représentant la fonction dérivée f':
 - la fonction f' est décroissante sur] $-\infty$; 0[donc la fonction f est concave sur cet intervalle;
 - la fonction f' est croissante sur]0; $+\infty[$ donc la fonction f est convexe sur cet intervalle.

Partie 2

On admet que la fonction f mentionnée dans la Partie 1 est définie sur \mathbb{R} par : $f(x) = (x+2)e^{-x}$.

1. Pour tout nombre réel x, $f(x) = (x+2)e^{-x} = xe^{-x} + 2e^{-x} = \frac{x}{e^x} + 2e^{-x}$.

D'après le cours : $\lim_{x \to ++\infty} \frac{e^x}{x} = +\infty$ donc $\lim_{x \to +\infty} \frac{x}{e^x} = 0$.

De plus $\lim_{x \to +\infty} e^{-x} = 0$ donc $\lim_{x \to +\infty} f(x) = 0$.

On en déduit que la courbe $\mathscr C$ admet la droite d'équation y=0, c'est-à-dire l'axe des abscisses, comme asymptote horizontale en $+\infty$.

On admet que $\lim_{x \to -\infty} f(x) = -\infty$.

- **2. a.** $f'(x) = 1 \times e^{-x} + (x+2) \times (-1)e^{-x} = (1-x-2)e^{-x} = (-x-1)e^{-x}$.
 - **b.** Pour tout x, $e^{-x} > 0$ donc f'(x) est du signe de -x-1; donc f'(x) s'annule et change de signe en x = -1.

 $f(-1) = (-1+2)e^1 = e$; on établit le tableau de variations de f sur \mathbb{R} :

x	-∞		-1		+∞
-x-1		+	•	-	
f'(x)		+	•	_	
f(x)	-∞		e ·		

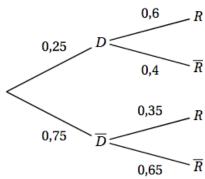
c. Sur l'intervalle [-2; -1], f est continue (car dérivable) et est strictement croissante à valeurs dans [0; e]. Or $2 \in [0; e]$, donc d'après le corollaire du théorème des valeurs intermédiaires, l'équation f(x) = 2 admet une unique solution α sur l'intervalle [-2; -1].

À l'aide de la calculatrice, $\alpha \approx -1.6$.

- 3. $f''(x) = (-1) \times e^{-x} + (-x-1) \times (-1)e^{-x} = (-1+x+1)e^{-x} = xe^{-x}$ $e^{-x} > 0$ pour tout x, donc f''(x) est du signe de x.
 - Sur] $-\infty$; 0[, f''(x) < 0 donc la fonction f est concave.
 - Sur]0; $+\infty$ [, f''(x) > 0 donc la fonction f est convexe.
 - En x = 0, la dérivée seconde s'annule et change de signe donc le point A d'abscisse 0 de \mathscr{C} est le point d'inflexion de cette courbe.

Exercice n°2:

1. a.



- **b.** $p(\overline{D} \cap R) = p(\overline{D}) \times p_{\overline{D}}(R) = 0,75 \times 0,35 = 0,2625.$
- **c.** On a de même $p(D \cap R) = p(D) \times p_D(R) = 0,25 \times 0,6 = 0,15$. D'après la loi des probabilités totales : $p(R) = p(D \cap R) + p(\overline{D} \cap R) = 0,15 + 0,2625 = 0,4125$.
- **d.** Il faut trouver $p_R(\overline{D}) = \frac{p(R \cap \overline{D})}{p(R)} = \frac{0,2625}{0,4125} \approx 0,6364$, soit 0,64 au centième près.
- 2. a. Les tirs sont indépendants et à chaque tir la probabilité de le réussir est égale à 0,35 : la variable aléatoire X égale au nombre de réussites suit donc une loi binomiale de paramètres n = 10 et p = 0,35.
 - **b.** $P(X = 3) = {10 \choose 3} \times 0.35^3 \times (1 0.35)^7 \approx 0.25$
 - **c.** À l'aide de la calculatrice, $P(X \le 6) \approx 0.97$.
 - **d.** $P(X \ge 6) = 1 P(X < 6) = 1 P(X \le 5)$.

À l'aide de la calculatrice, $P(X \ge 6) = 1 - P(X \le 5) \approx 0,0949$ soit 0,09 au centième près.

3. Soit n un entier naturel non nul.

Stéphanie réalise une série de n tirs à trois points, les tirs sont indépendants et à chaque tir la probabilité de le réussir est égale à 0,35.

Soit X_n La variable aléatoire qui compte le nombre de tirs réussis, X_n suit donc la loi binomiale $\mathcal{B}(n;0,35)$.

a.
$$P(X_n \ge 1) = 1 - P(X_n = 0) = 1 - {n \choose 0} \times 0.35^0 \times (1 - 0.35)^n = 1 - 0.65^n$$

b. À l'aide de la calculatrice, $1-0.65^{10}\approx 0.987$ et $1-0.65^{11}\approx 0.991.$

La valeur minimale de n pour que la probabilité que Stéphanie réussisse au moins un tir parmi les n tirs soit supérieure ou égale à 0.99 est donc n = 11.

Exercice n°3:

• QUESTION 1: réponse B

Résoudre les systèmes pour les différents points.

Par exemple pour le premier point,

$$\begin{cases} -2 = -4 + 3t \\ 3 = 6 - 3t \\ 4 = 8 - 6t \end{cases} \Leftrightarrow \begin{cases} t = 1 \\ t = 1 \\ t = \frac{2}{3} \end{cases}$$
 donc ce point n'appartient pas à la droite.

Idem avec les autres.

• QUESTION 2 : réponse C

$$\begin{cases}
-2 = -4 + 3t \\
3 = 6 - 3t \\
4 = 8 - 6t
\end{cases}$$

Donc $\vec{u} \begin{pmatrix} 3 \\ -3 \\ -6 \end{pmatrix}$

• QUESTION 3 : réponse D

On prend comme vecteur directeur de la droite : $\overrightarrow{BA} \begin{pmatrix} 1 - (-1) \\ 1 - 3 \\ -2 - 2 \end{pmatrix}$ d'où $\overrightarrow{BA} \begin{pmatrix} 2 \\ -2 \\ -4 \end{pmatrix}$

On prend comme point A(1; 1; -2)

D'où

$$\begin{cases} x = 1 + 2t' \\ y = 1 - 2t', t' \in \mathbb{R} \\ z = -2 - 4t' \end{cases}$$

• QUESTION 4 : réponse D

 $\vec{u} \begin{pmatrix} 3 \\ -3 \\ -6 \end{pmatrix}$ et $\vec{u'} \begin{pmatrix} 2 \\ -2 \\ -4 \end{pmatrix}$ sont tels que $\vec{u} = 1.5\vec{u'}$ donc d et d' sont parallèles (au sens large).

1 = -4 + 3t

d passe par A(1;1;-2), donc testons si ce point appartient ou pas à d' en résolvant le système : 1 = 6 - 3t-2 = 8 - 6t

La résolution de ce dernier conduit sans peine à : $t = \frac{5}{3}$ pour chacune des trois équations. Donc ce système est compatible, et A appartient bien à d' (c'est le point de paramètre 5/3 de d').

Donc les deux droites sont confondues car parallèles et ayant un point en commun.

• QUESTION 5: réponse A

$$\begin{cases}
-2 \times 1 - 1,5 \times (-2) = 1 \\
-2 \times (-1) - 1,5 \times (-2) = 5 \\
-2 \times 3 - 1,5 \times 1 = -7,5
\end{cases}$$

• QUESTION 6 : réponse B

Le milieu de [FG] a pour coordonnées (0,5;1;1)

• QUESTION 7: réponse D

$$f'(x) = \frac{2e^{2x}(e^{2x} + 1) - 2e^{2x}(e^{2x} - 1)}{(e^{2x} + 1)^2}$$

D'où
$$f'(x) = \frac{4e^{2x}}{(e^{2x}+1)^2}$$

• QUESTION 8 : réponse C

$$f(x) = \frac{e^{2x}(1 - e^{-2x})}{e^{2x}(1 + e^{-2x})}$$

D'où
$$f(x) = \frac{(1-e^{-2x})}{(1+e^{-2x})}$$

Exercice n° 4:

I – Premier modèle

En 10 minutes la température a augmenté de 1,3-(-19) = 1,3+19 = 20,3 soit une augmentation de 2,03 °C.

Selon ce premier modèle l'augmentation de la température serait au bout de 25 minutes de $25 \times 2,03 = 50,75$ (°C).

Les gâteaux seraient donc à une température de -19 + 50,75 = 31,75 (°C) alors que la température ambiante est de 25 °C : c'est impossible, donc ce modèle n'est pas pertinent.

II - Second modèle

- **1.** On a $T_{n+1} T_n = -0.06 \times (T_n 25) \iff T_{n+1} T_n = -0.06T_n + 1.5 \iff T_{n+1} = T_n 0.06T_n + 1.5 \iff T_{n+1} = 0.94T_n + 1.5$.
- **2.** + Avec n = 0, la relation précédente donne $T_1 = 0.94 \times (-19) + 1.5 = 1.5 17.86 = -16.36$;
 - + Avec n = 1, la relation précédente donne $T_2 = 0.94 \times (-16.36) + 1.5 = 1.5 15.3784 = -13.8784$.
- **3.** Soit $n \in \mathbb{N}$ et P(n) la propriété : $T_n \leq 25$.

<u>Initialisation</u>: T_θ = -19 et -19 ≤ 25, donc la propriété est vraie au rang 0.

<u>Hérédité</u>: Soit n un entier naturel fixé.

On suppose que pour cet entier là P(n) est vraie, c'est-à-dire que : $T_n \le 25$.

Montrons alors sous cette hypothèse que P(n+1) est vraie, c'est-à-dire montrons que $T_{n+1} \le 25$.

Or par hypothèse de récurrence, $T_n \le 25$, donc $0.94T_n \le 25 \times 0.94$ (car 0.94 > 0), donc $0.94T_n + 1.5 \le 25 \times 0.94 + 1.5$ donc $T_{n+1} \le 23.5 + 1.5$ donc $T_{n+1} \le 25 : P(n+1)$ est donc vraie.

Conclusion : l'inégalité est vraie au rang 0 et si elle est vraie au rang n, elle l'est aussi au rang n+1.

D'après le principe de récurrence : quel que soit $n \in \mathbb{N}$, $T_n \leq 25$.

Ceci correspond à une évidence : la température des gâteaux ne peut dépasser la température ambiante.

- **4.** On sait que quel que soit $n \in \mathbb{N}$, $T_{n+1} T_n = -0.06 \times (T_n 25)$.
 - D'après la question précédente $T_n \le 25$ soit en multipliant par 0,06 :

$$0.06T_n \le 0.06 \times 25$$
, ou $0.06T_n \le 1.5$

et en prenant les opposés : $-1.5 \le -0.06 T_n$ et enfin en ajoutant à chaque membre 1.5 :

$$0 \leq -0.6T_n + 1.5.$$

On a donc démontré que quel que soit $n \in \mathbb{N}$, $T_{n+1} - T_n \geqslant 0$: la suite (T_n) est donc croissante.

- **5.** On a donc démontré que la suite (T_n) est croissante et majorée par 25 : elle converge donc vers une limite ℓ telle que $\ell \leq 25$.
- **6.** On pose pour tout entier naturel n, $U_n = T_n 25$.
 - **a.** Quel que soit $n \in \mathbb{N}$, $U_{n+1} = T_{n+1} 25 = 0.94 T_n + 1.5 25$ ou encore $U_{n+1} = 0.94 T_n 23.5 = 0.94 \left(T_n \frac{23.5}{0.94}\right) = 0.94 (T_n 25)$, soit finalement $T_{n+1} = 0.94 U_n$: cette égalité montre que la suite (U_n) est une suite géométrique de raison 0.94 et de premier terme $U_0 = T_0 25 = -19 25 = -44$.
 - **b.** On sait que quel soit $n \in \mathbb{N}$, $U_n = U_0 \times 0,94^n$ ou $U_n = -44 \times 0,94^n$.

Or
$$U_n = T_n - 25 \iff T_n = U_n + 25$$
 ou encore $T_n = -44 \times 0,94^n + 25$, soit finalement :

$$T_n = 25 - 44 \times 0,94^n$$
, quel que soit $n \in \mathbb{N}$

c. Comme 0 < 0.94 < 1, on sait que $\lim_{n \to +\infty} 0.94^n = 0$, d'où par somme de limites :

$$\lim_{n \to +\infty} T_n = \ell = 25.$$

- 7. **a.** On a $T_{25} = 25 44 \times 0,97^{25} \approx 15,632$ soit environ 16°C.
 - **b.** La calculatrice donne $T_{17} \approx 9,63$ et $T_{18} \approx 10,55$, donc Cécile devra déguster son gâteau entre la $17^{\rm e}$ et la $18^{\rm e}$ minute après sa sortie.

c.

```
def seuil():  n=0 \\ T=-19 \\  while T <10: \\  T=0.94*T+1.5 \\  n=n+1 \\  return n
```