Chapitre III

La dérivation

I-Rappels sur les équations de droites

Soit f la fonction définie sur \mathbb{R} par : f(x) = 2x + 1.

- a) Comment s'appelle la fonction f? Que peut-on dire de sa courbe représentative?
- b) Construire cette dernière dans un repère orthonormé (O; I; J).

Remarque: la courbe tracée a pour équation:.....

<u>Propriété</u>

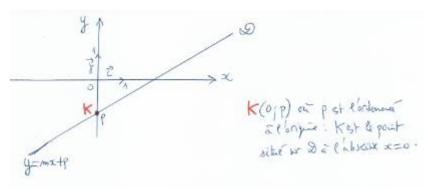
Toute droite D, non parallèle à l'axe des ordonnées, admet pour équation réduite :

$$y = \dots$$

m est appelé le coefficient directeur de la droite $\mathfrak D$ (ou encore la pente de la droite).

p est appelé l'ordonnée à l'origine : c'est l'ordonnée du point de la droite $\mathfrak D$ dont l'abscisse est nulle.

Illustration



● On parle de coefficient directeur et d'ordonnée à l'origine uniquement pour des droites non parallèles à l'axe des ordonnées. Les droites verticales (= parallèles à l'axe des ordonnées) n'ont ni coefficient directeur, ni d'ordonnée à l'origine!

Rappelons comment se calcule le coefficient directeur d'une droite non verticale :

Propriété clé (comment se calcule le coefficient directeur)

Soit $\mathfrak D$ la droite d'équation réduite : y=mx+p.

Soient $A(x_A; y_A)$ et $B(x_B; y_B)$ deux points distincts appartenant à \mathfrak{D} .

Alors $\vee \vee \vee m = \dots = \dots$

Exemple

Calculer le coefficient directeur des droites (AB) et (CD) sachant que :

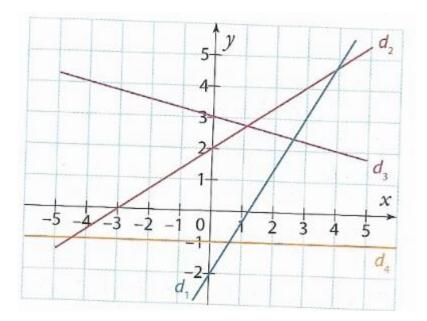
$$A(5;2), B(-3;1), C(\frac{1}{2}; \frac{3}{4}) \text{ et } D(-1; \frac{1}{2}).$$

<u>Remarque</u>: lorsqu'on demande de donner l'équation réduite d'une droite, il faut trouver la valeur de m et celle de p puis écrire l'équation réduite sous la forme : y = mx + p.

Exercice 1

Déterminer le coefficient directeur, puis l'ordonnée à l'origine de chacune des droites tracées.

En déduire l'équation réduite de chacune des droites ci-dessous :



×-----

Remarques fondamentales

- Les droites parallèles à l'axe des abscisses (appelées droites horizontales) ont toutes pour coefficient directeur
- Les droites "ascendantes" ont toujours un coefficient directeur.....
- Les droites "descendantes" ont toujours un coefficient directeur......

Il arrive que parfois, on ne puisse pas lire graphiquement l'équation réduite d'une droite.

Exercice 2

- 1) Déterminer l'équation réduite de la droite (AB), où A(4; 5) et B(1; 7).
- 2) Le point L(8; 5) appartient-il à la droite (AB)?

%------

Exercice 3

Construire dans un repère orthonormé la droite $\mathfrak D$ dont une équation est : 3x + 2y - 8 = 0.

Propriété

Deux droites parallèles ont le même coefficient directeur.

Exercice 4

Déterminer l'équation réduite de la droite \mathfrak{D}' passant par A(2; 15) et parallèle à la droite \mathfrak{D} d'équation réduite : y = -6x + 2022.

×-----

Exercice 5

Soit *f* la fonction définie sur \mathbb{R} par : $f(x) = x^2 + x + 1$.

- a) Déterminer les coordonnées du point A situé sur C_f et ayant pour abscisse 1.
- b) Soit h un réel non nul et B le point de C_f ayant pour abscisse 1+h. Exprimer en fonction de h le coefficient directeur de la droite (AB).
- c) En déduire les coordonnées du point B situé sur C_f pour lequel la droite (AB) est parallèle à l'axe des abscisses.

×-----

II - La notion de limite

Soit f la fonction définie sur \mathbb{R} par : $f(x) = x^2$ Comment se comporte f au voisinage de 0 ? C'est-à-dire, lorsque x est très proche de 0, de quel réel est proche f(x) ?

Notation:

- Pour dire que x tend vers 0 (si vous préférez, x se rapproche de 0, sans jamais valoir 0), on notera $x \rightarrow 0$.
- Pour dire que les valeurs prises par f sont proches de 0 lorsque x tend vers 0, on adoptera l'écriture classique suivante :

<u>Exemple</u>: Soit f la fonction définie sur \mathbb{R} par : f(x) = 2x + 3.

Déterminer : $\lim_{x\to 0} f(x)$.

g est définie sur \mathbb{R} par $g(x) = x^2 + 6$. Déterminer : $\lim_{x \to 0} g(x)$

III - Dérivation

<u>Définition</u>: Soit f une fonction définie sur un intervalle I, $a \in I$, et h un réel non nul tel que $a + h \in I$.

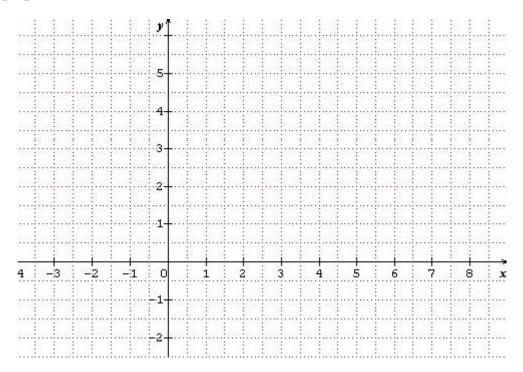
On appelle taux de variation de f entre a et a + h, le réel noté t(h) défini par :

$$t(h) = \frac{f(a+h) - f(a)}{a+h-a} = \frac{f(a+h) - f(a)}{h} = \frac{différence \text{des images}}{différence \text{des abscisses}} \quad \text{(calculées dans le même ordre)}.$$

Soit A(a; f(a)), et M(a+h; f(a+h)) deux points appartenant à la courbe représentative de la fonction f. Placer ces deux points dans le repère suivant :

Concrètement, que représente le taux de variation de f entre a et a + h?

<u>Illustration graphique</u>:



t(h) n'est autre que.....

Exemple

f est la fonction définie sur \mathbb{R} par : $f(x) = x^2 + x$.

Calculer le taux de variation de f entre 3 et 3 + h sous forme simplifiée où h est un réel non nul.

<u>Définition 2</u>

Une fonction f est dite dérivable en $a \in I$ si <u>le taux de variation</u> t(h) de f entre a et a + h admet une limite finie lorsque h tend vers 0.

f est dérivable en $a \in I \iff \text{il existe } \underline{un \ r\acute{e}el \ \ell} \text{ tel que : } \lim_{h \to 0} \ \frac{f(a+h)-f(a)}{h} = \ell$.

On adoptera la <u>notation suivante</u>: le réel $\ell = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$ est noté f'(a) [lire f prime de a], on l'appelle le nombre dérivé de f en a.

Donc on a (à bien retenir):	
$\bigvee\bigvee\bigvee f'(a) := \dots \bigvee\bigvee\bigvee$	

<u>Méthode</u>	pour	<u>démontrer</u>	qu	'une	<u>fonction</u>	est	dér	<u>rivable</u>	en	un	<u>réel</u>	<u>a</u> :
			_	•	,							

<u>Etape 1</u>:

<u>Etape 2</u>:....

<u>Exemple 1</u>: Soit f la fonction définie sur \mathbb{R} par : $f(x) = x^2$.

- a) Montrer que f est dérivable en a = 1, et déterminer la valeur de f '(1).
- b) Essayer de généraliser ce résultat en un réel a quelconque.

×-----

<u>Exemple 2</u>: Soit f la fonction définie sur \mathbb{R}^* par : $f(x) = \frac{1}{x}$.

Montrer que f est dérivable en a = 2, et calculer f'(2).

Généraliser ce résultat à un réel a quelconque non nul : démontrer que f est dérivable en a et donner l'expression de f '(a).

×-----

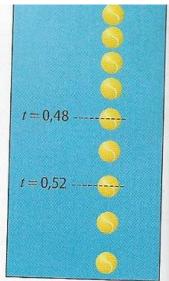
IV-Approche cinématique du nombre dérivé

Une balle en chute libre

On a photographié, à intervalles de temps réguliers 0,02 seconde, la chute d'une balle de tennis. Le tableau ci-dessous fournit le relevé des mesures effectuées : d(t) est la distance (arrondie à 0,01 mètre) parcourue par la balle, t secondes après l'avoir lâchée.

t	0,44	0,46	0,48	0,5	0,52	0,54	0,56
d(t)	0,95	1,04	1,13	1,23	1,32	1,43	1,54

La vitesse moyenne de la balle est égale au quotient de la distance parcourue par le temps écoulé.



- Montrer que la vitesse moyenne de la balle entre 0,5 s et 0,54 s est égale à 5 m·s⁻¹.
- On admet que la distance d(t) parcourue par la balle en fonction du temps t écoulé depuis le lâcher s'exprime par la formule $d(t) = 4.9t^2$. Soit r la fonction définie pour tout réel h non nul par $r(h) = \frac{d(0.5 + h) - d(0.5)}{h}$.
- **b.** Calculer r(0,1) puis interpréter le résultat en termes de vitesse.
- **c.** Calculer r(0,01) puis r(0,001). On arrondira si nécessaire les résultats à 0,001.

Quel constat fait-on concernant la vitesse moyenne de la balle entre les instants 0.5s et 0.5 + hs lorsque h tend vers 0?

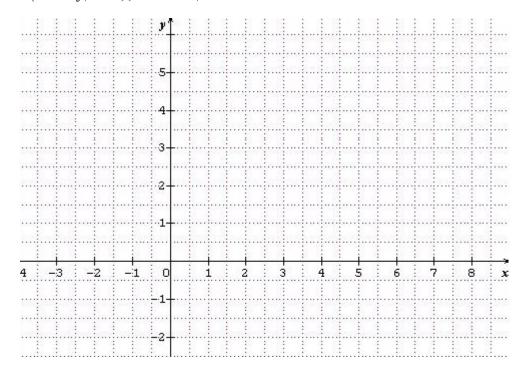
Ce nombre est appelé **nombre dérivé de** d en 0,5 et on le note d'(0,5). Ainsi, d'(0,5) = 4,9. Cette valeur limite 4,9 est la **vitesse instantanée** en $m \cdot s^{-1}$ de la balle à l'instant t = 0,5.

V - Interprétation géométrique du nombre dérivé d'une fonction

Soit f une fonction définie sur un intervalle I, et dérivable en $a \in I$; soit C_f la courbe représentant la fonction f et h un réel non nul.

Soit A(a; f(a)) et $M_h(a+h; f(a+h))$, et enfin, soit (\mathfrak{D}_h) la droite (AM).

<u>Illustration</u>:



Lorsque $h \to 0$, M_h se rapproche du point A, et la droite (\mathfrak{D}_h) se rapproche d'une position limite : la droite D_T

<u>Remarque</u>: la droite D_T "frôle" la courbe C_f .

Or, f est dérivable en a, donc, existe et vaut f'(a).

Donc, D_T a pour coefficient directeur

Cela amène naturellement à poser la définition suivante :

Définition

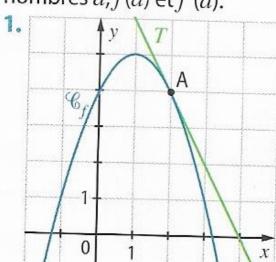
Soit f une fonction définie sur un intervalle I, et $a \in I$.

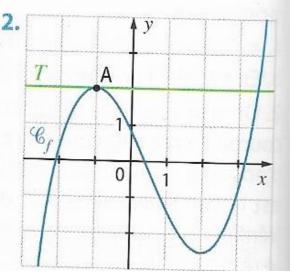
<u>Illustration</u>:

Exercice 6

Sur chacun des deux graphiques suivants sont représentées la courbe \mathscr{C}_f d'une fonction f dérivable en a et sa tangente T au point d'abscisse a.

Dans chacun des cas, déterminer par lecture graphique les nombres a, f(a) et f'(a).

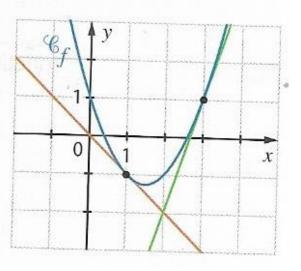




Exercice 7

On a tracé ci-contre la courbe d'une fonction f ainsi que ses tangentes aux points d'abscisses 1 et 3.

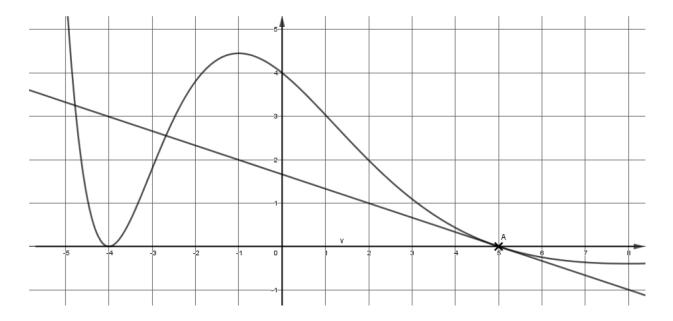
- 1. Déterminer graphiquement le nombre dérivé de f en 1.
- **2.** Déterminer graphiquement f'(3).



Exercice 8

f est une fonction dérivable en chacun de ses points. La tangente en A à la courbe de f est tracée ci-dessous.

- a) Déterminer le nombre dérivé de f en 5.
- b) Déterminer les réels x en lesquels f'(x) = 0.
- c) Quel est le signe de : f'(2) ? Et celui de f'(-3) ?



Propriété : (équation de la tangente à une courbe).

Soit a un réel.

Si f est dérivable en a, alors la courbe C_f représentant f admet une tangente en A(a;f(a)) qui a pour équation réduite :

y =

* * *

▼▼ A savoir par cœur, vous vous en servirez le jour du bac! ▼▼

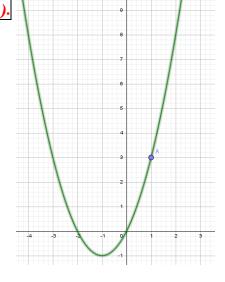
Preuve:

On retiendra bien que le coefficient directeur de cette tangente est f'(a)

Exercice 9

Soit f la fonction définie sur \mathbb{R} par : $f(x) = x^2 + 2x$.

- a) Vérifier que f est dérivable en a = 1 et que f'(1) = 4.
- b) Déterminer l'équation réduite de la tangente T à C_f en le point A d'abscisse a=1.
- c) Construire T dans le repère ci-contre :



VI - Opérations algébriques sur les fonctions dérivables

A-Fonction dérivée

<u>Définition</u>

Soit f une fonction définie sur un intervalle I.

On dit que f est dérivable sur I lorsque f est dérivable en chacun des points de I.

Dans ce cas, on définit une nouvelle fonction, notée f', appelée la fonction dérivée de la fonction f.

$$f': I \to \mathbb{R}$$

$$x \to f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}.$$

Le tableau suivant, fournit la liste des dérivées des principales fonctions usuelles.

Il est à mémoriser par cœur, vous en aurez besoin le jour du baccalauréat.

Fonction f	Ensemble de définition de f	Ensemble sur lequel f est dérivable	Fonction dérivée $f^{\ \prime}$
Fonction constante:			
$f(x) = k$, où $k \in \mathbb{R}$.			
Fonction affine :			
f(x) = ax + b avec a et b			
réels.			
Fonction carrée :			
$f(x) = x^2$			
Fonction puissance :			
$f(x) = x^n \text{ avec } n \in \mathbb{N}^*$			
Fonction inverse :			
$f(x) = \frac{1}{x}$			
Fonction racine carrée :			
$f(x) = \sqrt{x}$			

Cas particuliers importants:

L'identité définie sur \mathbb{R} par : f(x) = x est dérivable sur \mathbb{R} et $f'(x) = \dots$

La fonction cube définie sur \mathbb{R} par : $f(x) = x^3$ est dérivable sur \mathbb{R} et $f'(x) = \dots$

Quelques justifications sur les résultats du tableau des dérivées usuelles :

<u>Cas des fonctions affines</u>:

<u>Remarque</u>: une fonction constante est une fonction affine particulière (avec a=0), donc la première ligne du tableau est justifiée.

Exemple

Déterminer les dérivées de chacune des fonctions f et g définies sur \mathbb{R} par :

$$f(x) = 12x + 1 \qquad g(x) = -x.$$

Cas de la fonction carrée : vu à l'exemple 1 du paragraphe III!

Cas de la fonction inverse :

Soit a un réel non nul. Etablir que f est dérivable en a, et déterminer f'(a) où f est définie sur \mathbb{R}^* par : $f(x) = \frac{1}{x}$.

Soit
$$a \neq 0$$
 et $h \neq 0$ tels que $a + h \neq 0$.
Alors $f(a + h) - f(a) = \frac{1}{a + h} - \frac{1}{a} = \frac{a - (a + h)}{a(a + h)} = -\frac{h}{a(a + h)}$.
Ainsi, $r(h) = \frac{f(a + h) - f(a)}{h} = -\frac{h}{a(a + h)} \times \frac{1}{h} = -\frac{1}{a(a + h)}$.
Par conséquent, $\lim_{h \to 0} r(h) = \lim_{h \to 0} -\frac{1}{a(a + h)} = -\frac{1}{a \times (a + 0)} = -\frac{1}{a^2}$.
Donc f est dérivable en a et $f'(a) = -\frac{1}{a^2}$. Ainsi, pour tout $x \neq 0$, $f'(x) = -\frac{1}{x^2}$.

On admet les autres relations donnant les dérivées dont la démonstration dépasse le niveau de première.

Démontrons (à titre culturel) que la fonction racine carrée n'est pas dérivable en 0.

$$f(x) = \sqrt{x}$$
 avec $x \ge 0$.

Soit h un réel strictement positif. Etudions la limite du taux d'accroissement $\frac{f(0+h)-f(0)}{h}$ lorsque h tend vers 0 (en restant strictement positif):

Or, ici,
$$\frac{f(0+h)-f(0)}{h} = \frac{f(h)-f(0)}{h} = \frac{\sqrt{h}-\sqrt{0}}{h} = \frac{\sqrt{h}}{h} = \frac{\sqrt{h}}{\sqrt{h} \times \sqrt{h}} = \frac{1}{\sqrt{h}}$$

h	0,01	0,0001	0,000001	0,0000000001
1	10	100	1000	100000
$\overline{\sqrt{h}}$				

Ce tableau devrait légitimement vous convaincre que lorsque h se rapproche de 0, la quantité $\frac{1}{\sqrt{h}}$ devient "de

plus en plus grande", et finit par être supérieure à n'importe quel réel arbitrairement fixé, bref que :

$$\lim_{\substack{h\to 0\\h>0}} \frac{1}{\sqrt{h}} = +\infty.$$

Concrètement, la sécante (OM) où O(0;0) et $M(h;\sqrt{h})$ tend à devenir verticale lorsque h se rapproche de 0 (et on rappelle qu'une droite verticale n'admet pas de coefficient directeur).

Exercice 10

- a) Rappeler la dérivée de la fonction f définie sur \mathbb{R} par : $f(x) = x^3$.
- b) Déterminer s'il existe une tangente à la courbe représentative de la fonction f qui est parallèle à la droite D d'équation réduite : y = -x + 5.
- c) Même question avec la droite Δ d'équation réduite : y = 12x + 3. Préciser les coordonnées des points de contact entre la tangente et la courbe représentant f.

%------

B - Dérivation et opérations algébriques

Définition de la somme de deux fonctions

Exemple

Déterminer la somme des fonctions u et v définies sur \mathbb{R} par : $u(x) = x^2$ et v(x) = 2x + 3.

La notion de somme de fonctions s'étend naturellement à plus de deux fonctions.

Par exemple, la fonction f définie sur $[0; +\infty[$ par $: f(x) = x^3 + x^2 + \sqrt{x}$ est la somme de trois fonctions !

1) Dérivée de la somme de deux fonctions

Si u et v sont dérivables sur I, alors la fonction u + v est dérivable sur I, et on a : $\nabla \nabla (u + v)^2 = \nabla \nabla \nabla v$. On admet cette relation.

On retiendra donc que <u>la dérivée d'une somme est égale à la somme des dérivées</u> et que cette relation se généralise à plus de deux fonctions.

Exemple

Calculer la dérivée de chacune des fonctions suivantes définie par :

$$f(x) = x^2 + 5x$$
 ; $g(x) = x^3 + x - 3$; $h(x) = x^2 - 3x + \frac{1}{x}$ où $x \neq 0$.

Définition du produit d'une fonction par un réel

Soit u une fonction définie sur un intervalle I et k un nombre réel.

Le produit du réel k et de la fonction u est la fonction notée ku et définie sur I par :

Exemple

Déterminer 2u puis -u où u est définie sur \mathbb{R} par : $u(x) = x^2 + 5x + 2$.

1) Dérivée du produit d'un réel par une fonction

Si u est dérivable sur I, alors, pour tout **réel k**, la fonction ku est dérivable sur I, et on a :

$$\vee \vee \vee (ku)' = \vee \vee \vee$$

On retiendra que pour dériver un "multiple" d'une fonction donnée, on dérive la fonction donnée, et on multiplie le résultat obtenu par ce multiple.

Exemple

Calculer la dérivée de chacune des fonctions suivantes :

$$f(x) = 5x^2$$

$$g(x) = -\frac{1}{3} x^3$$

$$h(x) = 5x^3 + 4x^2 + 6x + 1$$

La courbe représentative de la fonction h admet-elle des tangentes horizontales ? Justifier.

$$i(x) = -3x^2 - 5x + 11.$$

$$j(x) = \frac{\sqrt{x}}{2}$$

Définition du produit de deux fonctions

Soient *u* et *v* deux fonctions définies sur un même intervalle I.

Le produit des fonctions u et v est la fonction notée uv, définie sur I par :

$\underline{Exemple}$

Déterminer uv lorsque u et v sont les fonctions définies sur \mathbb{R} par : u(x) = 3x et v(x) = 5x - 1.

3) Dérivée d'un produit de fonctions

Si u et v sont dérivables sur I, alors la fonction uv est dérivable sur I, et on a : $\bigvee\bigvee\bigvee$ (uv)' =

En particulier, lorsque u = v, on a : $(u^2)^2 = v$

Démonstration donnée à titre indicatif

Calculons le taux de variation de (uv)(x) = u(x)v(x), pour $h \neq 0$:

$$t(h) = \frac{(uv)(x+h) - (uv)(x)}{h} = \frac{u(x+h)v(x+h) - u(x)v(x)}{h}$$

On retranche puis on ajoute un même terme

$$t(h) = \frac{u(x+h)v(x+h) - u(x)v(x+h) + u(x)v(x+h) - u(x)v(x)}{h}$$

$$= \frac{v(x+h)\left[u(x+h) - u(x)\right] + u(x)\left[v(x+h) - v(x)\right]}{h}$$

$$= v(x+h) \times \frac{u(x+h) - u(x)}{h} + u(x) \times \frac{v(x+h) - v(x)}{h}$$

On passe ensuite à la limite :

$$\lim_{h \to 0} t(h) = \lim_{h \to 0} \frac{(uv)(x+h) - (uv)(x)}{h}$$

$$= \lim_{h \to 0} \left[v(x+h) \times \frac{u(x+h) - u(x)}{h} + u(x) \times \frac{v(x+h) - v(x)}{h} \right]$$

$$= \lim_{h \to 0} v(x+h) \times \lim_{h \to 0} \frac{u(x+h) - u(x)}{h} + \lim_{h \to 0} u(x) \times \lim_{h \to 0} \frac{v(x+h) - v(x)}{h}$$

$$= v(x) u'(x) + u(x) v'(x)$$

La dérivée du produit : (uv)' = u'v + uv'

<u>Pour la seconde relation</u>: preuve:

[™]Attention : la dérivée d'un produit n'est pas le produit des dérivées *[™]* (erreur classique).

Exercice 11

- a) Calculer la dérivée de la fonction f définie sur $[1; +\infty[$ par $: f(x) = (2x+1)\sqrt{x}$.
- b) Même question avec la fonction g définie sur \mathbb{R} par : $g(x) = (5x^2 7x + 1)^2$
- c) Même question avec la fonction h définie sur]0; $+\infty[$ par : $h(x) = x^3 \sqrt{x}$.

Q,	/		
0	\	 	

Définition de l'inverse d'une fonction

Soit v une fonction définie sur un intervalle I, qui ne s'annule pas sur I (c'est-à-dire que pour tout réel $x \in I$, $v(x) \neq 0$).

<u>Exemple</u>: Justifier que la fonction v définie par : $v(x) = x^2 + x + 2$ ne s'annule pas sur \mathbb{R} , puis déterminer l'expression de $\frac{1}{v}$.

4) Dérivée de l'inverse d'une fonction

Si v est dérivable sur I, et si de plus v ne s'annule pas sur I, alors la fonction $\frac{1}{v}$ est dérivable sur I, et

on a:
$$\bigvee\bigvee\left(\frac{1}{v}\right)' = \dots \bigvee\bigvee\bigvee$$

<u>Preuve</u>:

Exercice 12

- 1) f est définie sur $[1; +\infty[$ par $: f(x) = \frac{1}{2x^2 + x}$. Calculer f'(x).
- 2) Même question avec la fonction g définie sur \mathbb{R}^* par : $g(x) = \frac{1}{x^3}$
- 3) Même question avec la fonction h définie sur] 0; $+\infty$ [par : $h(x) = 4x^2 + 3x + \frac{5}{x^2}$.

Définition du quotient de deux fonctions

Soit u et v deux fonctions définies sur un intervalle I, telles que v ne s'annule pas sur I. La fonction quotient de u par v, notée $\frac{u}{v}$ est définie sur I par :

<u>Exemple</u>: u et v sont définies sur \mathbb{R} par: u(x) = 2x + 1 et $v(x) = x^2 + 1$.

Déterminer l'expression de la fonction $\frac{u}{v}$.

5) Dérivée d'un quotient de fonctions.

Si <u>u et v sont dérivables sur I</u>, et si <u>v ne s'annule pas sur I</u>, alors la fonction $\frac{u}{v}$ est dérivable sur I, et

on a:

$$\bigvee\bigvee\bigvee\left(\frac{u}{v}\right)'=$$

Preuve:

Exercice 13

1) Soit f la fonction définie par : $f(x) = \frac{3x+1}{x+4}$

Déterminer son ensemble de définition, puis justifier que f est dérivable sur ce dernier, puis calculer f'(x).

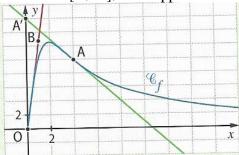
- 2) g est définie sur $\mathbb R$ par : $g(x) = \frac{-3x^2 + 5x + 1}{x^2 + x + 3}$. Calculer la dérivée de g.
- 3) h est définie sur]0 ; + ∞ [par : $h(x) = \frac{\sqrt{x}}{x+1}$. Calculer h'(x) .

×-----

Exercice 14 On administre un médicament par injection intraveineuse.

On note f(t) la quantité de produit (en milligrammes) présente dans le sang t heures après l'intraveineuse, t appartenant à l'intervalle [0; 24].

On admet que f est dérivable sur [0; 24], et on appelle vitesse de diffusion du produit à l'instant t le nombre f'(t).



- **1.** Déterminer graphiquement la vitesse de diffusion du produit à t = 4.
- 2. On admet que pour tout $t \in [0; 24]$:

$$f(t) = \frac{50t}{t^2 + 4}.$$

- a. Retrouver par le calcul la réponse apportée à la question 1..
- b. Calculer la vitesse initiale de diffusion du produit.

6) Dérivée de fonctions composées

Soient a et b deux réels et g une fonction définie sur \mathbb{R} .

f est définie sur \mathbb{R} par : f(x) = g(ax+b).

On dit que f est la composée de la fonction affine $x \mapsto ax+b$ par g.

Exemple

La fonction f est définie sur \mathbb{R} par : $f(x) = (2x + 5)^3$.

On a : f(x) = g(2x + 5) où g est la fonction définie sur \mathbb{R} par :

Propriété (admise)

f est définie sur \mathbb{R} par : f(x) = g(ax+b).

Si g est dérivable sur \mathbb{R} , alors f est dérivable sur \mathbb{R} , et on a : $f'(x) = \dots$

 $\underline{Retenir}$: on dérive le contenu de la parenthèse que l'on multiplie par la dérivée de g appliquée au contenu de cette parenthèse.

Exemples

Déterminer l'expression de la dérivée de chacune des fonctions ci-dessous :

a)
$$f(x) = (2x+5)^3$$
.

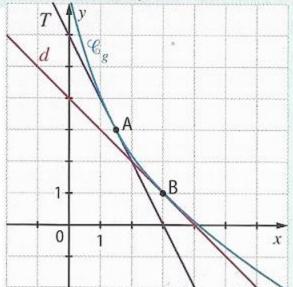
b)
$$m(x) = \sqrt{-3x+9}$$
 pour $x < 3$.

Exercices de synthèse

<u>I-</u>

Soit g la fonction définie sur]0; $+\infty[$ par $g(x) = \frac{a}{x} + bx + c$, où a, b et c sont trois réels. La courbe de g et deux de ses tangentes sont tracées ci-dessous.

Déterminer l'expression de g.



×-----

<u>II-</u>

Soit \mathscr{C} la courbe représentative de la fonction f définie sur \mathbb{R} par $f(x) = x^3$ et T la fangente à \mathscr{C} au point A d'abscisse -1.

- a) Justifier que Ta pour équation réduite : y = 3x + 2.
- Faire une conjecture sur la position de $\mathscr C$ par rapport à T.
- Vérifier que, pour tout réel x, $x^3 (3x + 2) = (x 2)(x + 1)^2$. Montrer que la tangente T recoupe la courbe $\mathscr C$ en un point B dont on déterminera les coordonnées.
 - Déterminer la position de la courbe \mathscr{C} par rapport à la droite T.

<u>III-</u>

Soit f la fonction définie sur \mathbb{R} par : $f(x) = x^3 + 3x^2 + 5x + 1$.

- a) Déterminer si la courbe représentant fadmet des tangentes horizontales.
- b) Démontrer que la courbe représentative de f admet deux tangentes parallèles à la droite (d) d'équation y=5x+4. Préciser les abscisses de ces points.

<u>IV-</u>

Problème ouvert

On considère la parabole \mathcal{G} d'équation : $y = x^2$, courbe représentative de la fonction carrée. Soit $M(\alpha; \beta)$ un point fixé du plan.

Déterminer le nombre de tangentes à cette parabole $\mathcal G$ passant par le point M.