Fonctions de référence.

I- Quelques propriétés remarquables

A-Fonctions paires, fonctions impaires

<u>Définition</u>

Une partie D de \mathbb{R} est dite symétrique par rapport à 0 ou encore centré en 0, si pour tout réel x appartenant à D, son opposé -x appartient également à D.

Exemple: L'intervalle [-4; 4] est symétrique par rapport à 0.

Par-contre, l'intervalle [-2; 3] n'est pas un intervalle symétrique par rapport à 0.

▼▼▼ <u>Définition</u> (fonction paire)

Soit f une fonction définie sur un ensemble D.

On dit que <u>f est paire</u> lorsque les deux conditions suivantes sont remplies :

D est symétrique par rapport à 0, c'est-à-dire, pour tout réel x appartenant à D, -x appartient à D,

ET pour tout réel x appartenant à D,

Exemples

1) Soit f la fonction définie sur \mathbb{R} par : $f(x) = x^2$. Montrer que f est paire sur \mathbb{R} .

f est-elle paire sur [-1; 3]?

2) La fonction *i* définie sur \mathbb{R} par : $i(x) = x^2 + 2x - 1$ est-elle paire sur \mathbb{R} ?

%------

<u>Propriété</u>

Soit f une fonction paire définie sur un ensemble D.

Dans un repère orthogonal, la courbe représentative de f est

Réciproquement, si la courbe d'une fonction admet pour axe de symétrie l'axe des ordonnées sur un intervalle D, alors f est une fonction paire.

<u>Justification</u>: Observons d'abord que si M(x;y), alors le symétrique de M par rapport à l'axe des ordonnées est le point M 'avec M '(.....;).

▼▼▼ <u>Définition</u> (fonction impaire)

Soit f une fonction définie sur un ensemble D.

On dit que <u>fest impaire</u> lorsque les deux conditions suivantes sont remplies :

* * *

D est symétrique par rapport à 0, c'est-à-dire, pour tout réel x appartenant à D, -x appartenant à D,

Exemples

1) Soit f la fonction définie sur \mathbb{R} par : $f(x) = x^3$. Montrer que f est impaire sur \mathbb{R} . f est-elle paire sur [-1; 3]?

2) Démontrer que la fonction g définie su	$r \mathbb{R} par : g(x)$	$= x^3 - 4x \text{ est}$	impaire s	sur $\mathbb R.$
---	---------------------------	--------------------------	-----------	------------------

×-----

<u>Propriété</u>

Soit f une fonction impaire définie sur un ensemble D.

Dans un repère, la courbe représentative de f est

Réciproquement, si la courbe d'une fonction f admet pour centre de symétrie l'origine du repère, alors f est impaire.

<u>Remarque</u>s : il est bon de garder à l'esprit qu'en général, une fonction n'est ni paire ni impaire sur un intervalle.

 $\bullet \bullet$ Si une fonction n'est pas paire sur un intervalle, cela ne signifie pas pour autant qu'elle est impaire sur cet intervalle! Regardez la fonction i des exemples précédents!

Le vocabulaire est ici malheureux, les termes paire et impaire pour une fonction ne sont pas contraires l'un de l'autre!

Exercice 1

Déterminer toutes les fonctions définies sur \mathbb{R} qui sont à la fois paires et impaires sur \mathbb{R} .

II- Fonctions de références

A) Les fonctions affines

<u>Définition</u>: On appelle fonction affine, toute fonction f définie sur \mathbb{R} par : f(x) = ax + b où a et b sont des réels.

On rappelle que la courbe représentative d'une fonction affine est une droite.

<u>Propriété fondamentale</u>: sens de variation des fonctions affines.

Soit f la fonction définie sur \mathbb{R} par f(x) = ax + b.

- 1) Si a > 0, alors f sur \mathbb{R} .
- 2) Si a < 0, alors $f \dots$ sur \mathbb{R} .
- 3) Si a = 0, alors f..... sur \mathbb{R} .

<u>Illustration et preuve</u>:

×-----

<u>Exemple</u>: Soit f la fonction définie sur \mathbb{R} par f(x) = -2x + 3.

Etudier son sens de variation, et dresser son tableau de variations.

Exercice 2

Soit f la fonction définie sur
$$[-4; 5]$$
 par : $f(x) = \begin{cases} 2x - 1 & \text{si } x \in [-4; 1] \\ -x + 2 & \text{si } x \in [1; 3] \\ 3x - 10 & \text{si } x \in [3; 5] \end{cases}$

Construire la courbe représentant f dans un repère orthonormé (0; I; J).

×-----

B) La fonction carrée

Rappel: la fonction carrée est la fonction f définie sur \mathbb{R} par : $f(x) = x^2$.

Nous avons déjà vu que dans un repère orthogonal la courbe représentant f admet l'axe des ordonnées comme axe de symétrie car f est paire sur \mathbb{R} .

Propriété

<u>Preuve</u>: Plaçons-nous sur l'intervalle $]-\infty$; 0]: soient a et b deux réels tels que : $a \le b \le 0$.

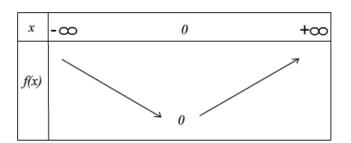
Comparons $f(a) = a^2$ et $f(b) = b^2$: or $f(a) - f(b) = a^2 - b^2 = (a - b)(a + b)$, et par donnée, $a \le b$ donc $a - b \le 0$ et vu que $a \le 0$ et $b \le 0$, $a + b \le 0$ (somme de deux réels négatifs).

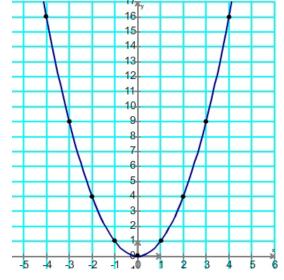
Donc d'après la règle des signes d'un produit, $(a-b)(a+b) \ge 0$, c'est-à-dire $f(a)-f(b) \ge 0$, et donc $f(a) \ge f(b)$: ainsi f est décroissante sur l'intervalle] $-\infty$; 0].

Sur $[0; +\infty[$: même type de démonstration que vous pouvez faire seul à titre d'exercice !

%------

Bien avoir en tête l'allure de la courbe représentative de cette fonction, ainsi que son tableau de variation :





<u>Remarques</u>: la fonction carrée a pour minimum $0 \operatorname{sur} \mathbb{R}$, et on retrouve que pour tout réel $x, x^2 \ge 0$.

Deux nombres positifs et leurs carrés sont rangés dans le même ordre.

Deux nombres négatifs et leurs carrés sont rangés dans l'ordre inverse.

Exercice 3

a, b, c et d désignent quatre nombres réels.

Compléter dans chaque cas par l'information la plus précise possible, en justifiant :

- 2) Si $b \leq -\sqrt{2}$, alors b^2
- 3) $Si -5 \le c \le -2.5$ alors c^2
- 4) Si $-3 \le d \le 2$, alors d^2

%------

Propriété 🗸 🗸 🗸

Soit k un nombre réel.

Considérons l'équation : $x^2 = k$, d'inconnue x où x est un nombre réel.

 $\vee \vee Si \ k < 0$, alors cette équation n'a.....

 $\vee \vee Si \ k = 0$, alors cette équation a pour unique solution.....

▼ Enfin, lorsque k > 0, l'inéquation : $x^2 < k$ admet pour solutions......

<u>Remarque</u>: cela doit facilement se retrouver mentalement en visionnant la courbe représentative de la fonction carrée!!

<u>Preuve</u>:

×------

Exercice 4

Résoudre mentalement les équations et inéquations suivantes d'inconnue x appartenant à \mathbb{R} :

a)
$$x^2 = 3$$

b)
$$x^2 = -6$$

c)
$$x^2 = 12$$

b)
$$x^2 = -6$$
 c) $x^2 = 12$ d) $x^2 < 25$

e)
$$x^2 \ge 36$$
.

Complément : équations du second degré moins triviales

<u>Lemme</u>: pour tous réels x et a: $x^2 + ax = \dots$

Preuve:

%------

<u>Exemple</u>: transformer comme dans le lemme: $x^2 + 4x$; $x^2 - x$

×-----

<u>Application</u>: utiliser cette technique pour résoudre dans $\mathbb R$ les équations suivantes :

$$x^{2}+4x+3=0$$
 ; $x^{2}-x+1=0$; $5x^{2}+3x-4=x^{2}-x+2$.

%------

<u>Remarque</u>: avec cette technique, vous pouvez résoudre toutes les équations du second degré de la forme : $x^2+bx+c=0$ où b et c sont des réels.

En se ramenant à un coefficient des x^2 égal à 1 au préalable, vous pouvez même résoudre toutes les équations du second degré de la forme : $ax^2 + bx + c = 0$, en commençant par factoriser par a!

<u>Exemple</u>: résoudre dans \mathbb{R} l'équation: $x^2 + 5x + 3 = 0$.

C) La fonction racine carrée

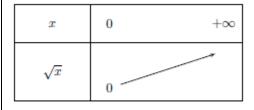
Définition

La fonction racine carrée est la fonction f définie sur $[0; +\infty[$ par $: f(x) = \sqrt{x}$.

Elle ne prend que des valeurs positives ou nulles.

Propriété

La fonction racine carrée est croissante sur $[0; +\infty[$.



<u>Preuve</u>: Soient a et b deux réels tels que : $0 \le a \le b$: on sait que $a = (\sqrt{a})^2$ et $b = (\sqrt{b})^2$.

Ainsi, $0 \le a \le b$ s'écrit encore sous la forme : $(\sqrt{a})^2 \le (\sqrt{b})^2$.

Or, \sqrt{a} et \sqrt{b} sont positifs ou nuls, donc rangés dans le même ordre que leurs carrés (par croissance de la fonction carrée sur $[0; +\infty]$).

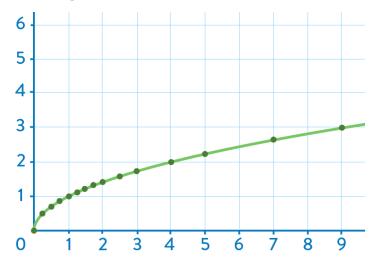
Par suite on a : $\sqrt{a} \le \sqrt{b}$ et la fonction racine carrée croit sur $[0; +\infty[$.

On retiendra donc que : $\forall \forall 0 \le a \le b$ équivaut à $\sqrt{a} \le \sqrt{b}$.

En effet : si $0 \le a \le b$, alors par croissance de la fonction racine carrée sur $[0 ; +\infty[$, on a $: \sqrt{a} \le \sqrt{b}$.

Réciproquement, si $\sqrt{a} \le \sqrt{b}$, alors comme les nombres \sqrt{a} et \sqrt{b} sont positifs, et que la fonction carrée croît sur $[0; +\infty[$, on a : $(\sqrt{a})^2 \le (\sqrt{b})^2$ c'est-à-dire: $(0 \le a) \le b$.

Courbe représentative de la fonction racine carrée :



x	$f(x) = \sqrt{x} \text{ à } 0,1 \text{ près.}$
0	0
0.25	0.5
0.5	0.7
0.75	0.9
1	1
1.25	1.1
1.5	1.2
1.75	1.3
2	1.4
2.5	1.6
3	1.7
4	2
5	2.2
7	2.6
9	3

Exercice 5

Résoudre dans \mathbb{R} les équations et inéquations suivantes :

a)
$$\sqrt{x} < 2.5$$
 ; b) $\sqrt{x} - 4 \ge 0$; c) $\sqrt{x} = -1$

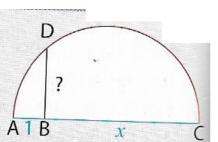
c)
$$\sqrt{x} = -1$$

d)
$$3-4\sqrt{x} \le 1$$
 ; e) $\sqrt{x} \ge -1$; f) $\frac{7}{\sqrt{x}} = 5$.

Exercice 6

A, B et C sont trois points alignés tels que AB = 1 et BC = x.

Le point D appartient à un demi-cercle de diamètre



[AC] et le segment [BD] est perpendiculaire à [AB].

Exprimer la longueur BD en fonction de x.

Exercice 7

Sans calculatrice, comparer les réels : $a = \sqrt{\sqrt{5}-1}$ et $b = \sqrt{\sqrt{3}-1}$.

Exercice 8

Etudier, sur l'intervalle $[0; +\infty[$, la position relative des courbes représentatives des fonctions f et gdéfinies par : f(x) = x et $g(x) = \sqrt{x}$.

D) La fonction cube

On rappelle que le cube d'un réel x est le nombre $x \times x \times x$ que l'on note x^3 .

Par exemple, $5^3 = 5 \times 5 \times 5 = 125$.

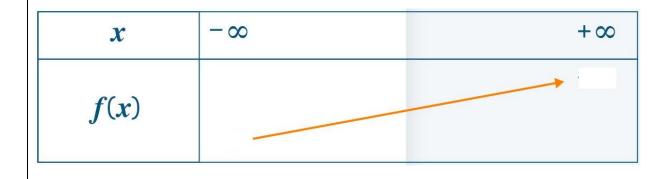
<u>Définition</u>: La fonction cube est la fonction f définie sur \mathbb{R} par : $f(x) = x^3$.

<u>Conséquence de la définition</u>: la fonction cube est impaire sur \mathbb{R} , donc l'origine O du repère est centre de symétrie de la courbe représentative de la fonction cube.

En effet, pour tout réel x, -x est réel et $f(-x) = (-x)^3 = (-1x) \times (-1x) \times (-1x) = (-1)^3 \times x^3 = -x^3 = -f(x)$

Propriété

La fonction cube est croissante sur \mathbb{R} .



Preuve:

Soient a et b deux réels tels que : $a \le b$.

Comparons $f(a) = a^3$ et $f(b) = b^3$ en étudiant le signe de la différence f(a) - f(b):

$$Or, f(a) - f(b) = a^3 - b^3.$$

Nous allons vérifier que pour tous réels a et b, on a les deux points suivants :

1) la factorisation suivante : $a^3 - b^3 = (a - b)(a^2 + ab + b^2)$

2)
$$a^2 + ab + b^2 = (a + \frac{b}{2})^2 + \frac{3}{4}b^2$$
.

Pour le point 1), on développe naïvement :

 $(a-b)(a^2+ab+b^2) = a^3 + a^2b + ab^2 - ba^2 - ab^2 - b^3 = a^3 - b^3$ (les termes de même couleurs se simplifient, on rappelle que le produit des réels est commutatif, donc $a^2b = ba^2$ et $ab^2 = b^2a$).

Pour le point 2), on développe avec la première identité remarquable, puis on réduit le membre de droite :

$$(a + \frac{b}{2})^2 + \frac{3}{4}b^2 = a^2 + 2 \ a \times \frac{b}{2} + \left(\frac{b}{2}\right)^2 = a^2 + ab + \frac{b^2}{4}.$$

Grâce à 1) et 2), on peut donc dire que pour tous réels a et b, on a :

$$f(a) - f(b) = a^3 - b^3 = (a-b)((a + \frac{b}{2})^2 + \frac{3}{4}b^2).$$

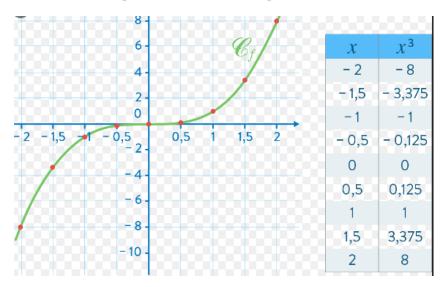
Or, si $a \le b$, alors $a - b \le 0$, et $(a + \frac{b}{2})^2 + \frac{3}{4}b^2 \ge 0$ en tant que somme de deux termes positifs (le carré d'un réel est toujours positif ou nul et $\frac{3}{4} > 0$).

Par suite d'après la règle des signes d'un produit, $(a-b)((a+\frac{b}{2})^2+\frac{3}{4}b^2) \le 0$.

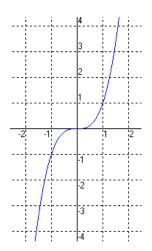
Donc $f(a) - f(b) \le 0$, donc $f(a) \le f(b)$. Par suite f est croissante sur \mathbb{R} .

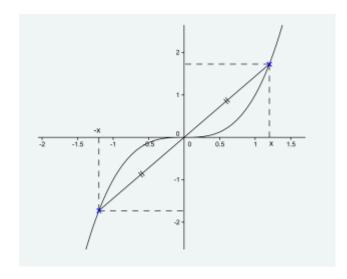
Tracé : grâce à une calculatrice ou un ordinateur on obtient la courbe représentative de la fonction cube :

(Attention, le repère ci-dessous n'est pas orthonormé!)



En repère orthonormé:





Propriété

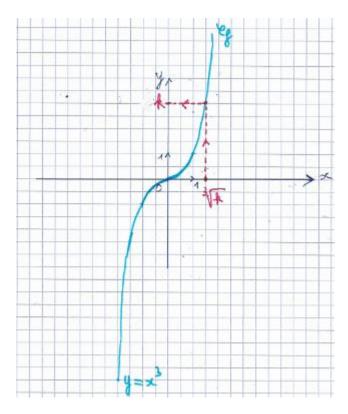
Soit k un nombre réel.

Considérons l'équation : $x^3 = k$, d'inconnue x où x est un nombre réel.

Cette équation admet une unique solution réelle, appelée la racine cubique de k et notée $\sqrt[3]{k}$

L'inéquation: $x^3 < k$ a pour ensemble de solutions l'intervalle :] $-\infty$; $\sqrt[3]{k}$ [.

L'inéquation: $x^3 > k$ a pour ensemble de solutions l'intervalle : $\frac{1}{\sqrt[3]{k}}$; $+\infty$ [.



Preuve: admis en classe de seconde.

On retiendra que pour tout réel x, $(\sqrt[3]{x})^3 = x$: l'unique réel qui élevé au cube est égal à x est la racine cubique de x.

Par exemple,
$$\sqrt[3]{8} = 2 \operatorname{car} 2^3 = 8$$

 $\sqrt[3]{-27} = -3 \operatorname{car} (-3)^3 = -27$.

 $\sqrt[3]{4}$ a une écriture décimale avec une infinité de chiffres après la virgule : $\sqrt[3]{4} \approx 1,587401052$

C'est là que la notation $\sqrt[3]{4}$ a toute sa pertinence!

Calculer mentalement: $\sqrt[3]{1000}$; $\sqrt[3]{-64}$

<u>Réponse</u> :

Exercice 9

Résoudre dans $\mathbb R$ les équations et inéquations suivantes :

$$x^3 = 21$$
 ; $x^3 < 1$; $-125 \le x^3 < 0.216$

×-----

Propriété (position relative de courbes représentatives de fonctions de référence).

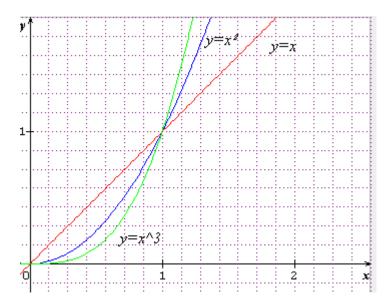
• Pour tout réel x tel que : $0 \le x \le 1$, on a : $x^3 \le x^2 \le x$

Donc sur l'intervalle [0;1], la courbe représentative de la fonction cube est située en dessous de celle de la fonction carrée, elle-même située en dessous de celle de la fonction identité (fonction qui à tout réel x associe ce même réel x).

• Pour tout réel x tel que $x \ge 1$, on $a: x^3 \ge x^2 \ge x$

Donc sur l'intervalle $[1; +\infty[$, la courbe représentative de la fonction cube est située au-dessus de celle de la fonction carrée, elle-même située au-dessus de celle de la fonction identité.

<u>Illustration et preuve</u>:



<u>Preuve</u>:

Si $0 < x \le 1$, alors en multipliant par x chacun des membres de cette inégalité, il vient : $0 < x^2 \le x$, et en refaisant la même action, il vient que : $0 < x^3 \le x^2$.

Par suite, par transitivité de la relation <, on a : $x^3 \le x^2 \le x$.

Même principe si $x \ge 1$.

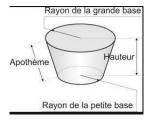
Exercice 10

- a) Résoudre dans \mathbb{R} l'inéquation : $4x^3 < 5x$.
- b) En déduire la position relative des courbes C_f et C_g des fonctions f et g définies sur \mathbb{R} par : $f(x) = 4x^3$ et g(x) = 5x.

×-----

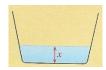
Exercice 11

Un chaudron a la forme d'un cône tronqué (figure ci-dessous) :



Le rayon du disque de la petite base mesure 10 cm et le rayon du disque de la grande base mesure 20 cm. Enfin, la hauteur (= segment dont les extrémités sont les centres de chacun des disques de base) est mesure 30 cm.

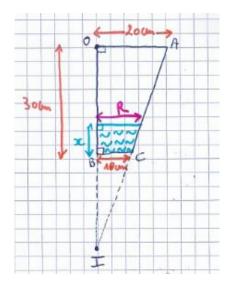
On remplit d'eau ce chaudron qui est vide au départ. On appelle x la hauteur d'eau dans le chaudron (dessin en coupe), et enfin V la fonction qui à x associe le volume d'eau contenu dans le cône tronqué rempli à la hauteur x.



Le but de cet exercice est de donner l'expression de V(x) en fonction de x.

a) A quel intervalle (noté *I*) le nombre x appartient-il?

Le dessin ci-dessous est une coupe du demi-cône tronqué précédent :



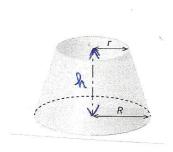
- b) Etablir que IB = 30 cm puis que $R = \frac{x}{3} + 10$.
- c) En déduire que pour tout réel x appartenant à I, $V(x) = \frac{\pi}{3}(\frac{x^3}{9} + 10x^2 + 300x)$.

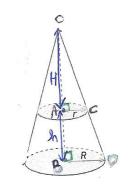
<u>Indication</u>: le volume de l'eau s'obtient en faisant la différence entre les volumes de deux cônes de la figure précédente et en utilisant la question b) !!!!

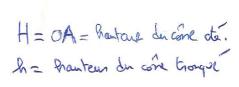
d) L'eau arrivant à mi-hauteur, le récipient contiendra-t-il plus ou moins de 5 litres d'eau?

Complément (DM):

On se propose en complément, de déterminer une relation donnant le volume d'un tronc de cône (ou cône tronqué), en fonction de r, R et h, où r est le rayon du petit disque du cône tronqué, R celui du grand disque du cône tronqué, et h la hauteur du cône tronqué.







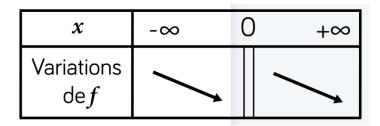
- 0) Etablir, pour tout réel R et r, l'identité suivante : $R^3 r^3 = (R r)(R^2 + Rr + r^2)$.
- 1a) A l'aide du théorème de Thalès de Milet, établir que $\frac{H}{H+h} = \frac{r}{R}$.
- 1b) En déduire l'expression de H en fonction de r, R et h. (On vous demande d'isoler H dans la relation du Ia).
- 2a) Exprimer le volume du cône tronqué, noté V, en fonction de r, R, h, H, puis à l'aide de la question 2b), en déduire que $V = \frac{\pi h}{3} \times (\frac{R^3}{R-r} \frac{r^3}{R-r})$.

E) La fonction inverse

La fonction inverse est la fonction f définie sur $\mathbb{R}^* =]-\infty$; $0[\cup]0$; $+\infty[$ par $f(x) = \frac{1}{x}$.

Propriété

La fonction inverse décroit sur chacun des intervalles]- ∞ ; 0[et]0; + ∞ [.



La double barre du tableau de variation rappelle que f n'est pas définie lorsque x = 0, car la division par 0 n'existe pas.

Preuve:

 $\bullet \bullet \bullet$ Dire que f décroit sur \mathbb{R}^* est faux, expliquons pourquoi :

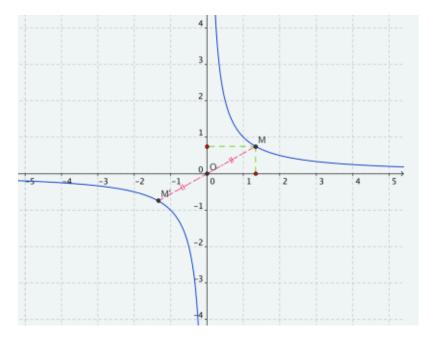
 $\underline{Remarque}$: la fonction inverse est impaire sur \mathbb{R}^* , donc l'origine O du repère est centre de symétrie de la courbe représentative de la fonction inverse.

La courbe représentative de la fonction inverse est appelée une hyperbole.

Tableau de valeurs

x	- 4	- 2	- 1	- 0,5	-0,25	0	0,25	0,5	1	2	4
$f(x) = \frac{1}{x}$	-0,25	-0,5	-1	-2	-4		4	2	1	0,5	0,25

Courbe représentative de la fonction inverse :



La courbe représentative de la fonction inverse rencontre-t-elle les axes du repère ? Justifier.

<u>Applications</u>:

- 1) Sans faire aucun calcul, comparer: a) $\frac{1}{0.24}$ et $\frac{1}{015}$; b) $\frac{1}{-0.99}$ et $\frac{1}{-1.01}$
- 2) Sachant que $-3 \le x < -1$, que peut-on dire de $\frac{1}{x}$? Justifier.
- 3) Sachant que $2 \le \frac{1}{x} \le 5$, donner un encadrement de x en justifiant.

Exercice 12

L'aire d'un rectangle vaut $3 m^2$. On sait que sa longueur est comprise entre 2,1 m et 2,2 m.

Déterminer un encadrement de sa largeur. Les bornes de l'encadrement seront exprimées en cm.

Exercice 13

Résoudre dans \mathbb{R}^* l'inéquation : $\frac{1}{x} > -2$.

×-----

Exercice 14

Déterminer le sens de variation de la fonction f définie sur l'intervalle]1; $+\infty$ [par : $f(x) = \frac{2}{x-1}$

×-----

Exercice 15

Un motard se rend d'un point A à un point B, distants de 10 km, à la vitesse de 60 km/h.

Il effectue le trajet retour de B vers A à la vitesse de x km/h. (x>0).

On note f(x) la vitesse moyenne, en km/h sur l'ensemble du trajet A -> B -> A.

a) Calculer la durée t_1 (en heures) du trajet aller, puis la durée t_2 (en heures) du trajet retour en fonction de x. En déduire que $f(x) = \frac{120x}{x+60}$.

b) En déduire la vitesse moyenne sur le trajet si la vitesse moyenne au retour vaut x = 40 km/h.

Le résultat obtenu est-il déroutant ?

- c) A quelle vitesse le motard doit-il effectuer le trajet retour pour que sa vitesse moyenne soit égale à 70 km/h?
- d) Est-il possible pour le motard d'avoir une vitesse moyenne de 120 km/h sur l'aller-retour ?
- e) Vérifier que pour tout réel x>0, $f(x) = 120 \frac{7200}{x+60}$.
- f) Ecrire un enchaînement, puis déterminer le sens de variation de f sur]0; $+\infty[$.